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The Web Service Model
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Scenario
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Scenario (cont.)

Sample Request:
Sell 500 shares of IBM stocks at the NYSE if a 
price of $21 dollars is reached within the next 
half hour
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Motivation

 Exploratory 
 The process of selecting Web services is non-deterministic
 Web services are a priori unknown
 Services should be determined dynamically

 Volatile
 A Web service answering a request at a given time may not 

be available to answer the same request in the future
 Services may become unavailable in the interval between 

selection and invocation
 Service may become unavailable during the execution

 Dynamic 
 Web service content provided by the operations may change 

frequently
 Change may affect the overall execution of the request



Issues

 Web Service Discovery and Selection
 Select Web services with appropriate 

functionality 
 More than one service might have to be selected
 Must be discovered in a “reasonable” time



Issues (cont.)

 Adapting to Web Service Changes
 Detect, propagate, and react to all “significant” 

changes in Web service environments
 Categories of changes:

 Internal
 Changes that occur inside a Web service (change in the 

data provided by a Web service)
 Example: change in the price of a share 

 External
 Changes that occur outside of a Web service (service 

availability) 
 Example: temporary or permanent unavailability of a Web 

service that provides functionality for the NYSE



Using Ontologies for Dynamic Discovery

 Why Ontologies?
 Form a coherent slice of service space 
 Provide sharing of service description knowledge
 UDDI was not designed to support relationships 

between Web services 
 Need to be familiar with the tModels in UDDI

 DAML-S
 Provides the ability to organize Web services into 

ontologies 
 Allows embedding relationship information into 

service descriptions to facilitate dynamic discovery



Example Ontology Description
(1)  <daml:Class rdf:ID="NYSE">
(2)    <rdfs:label>NewYorkStockExchange</rdfs:label>
(3)    <rdfs:subClassOf rdf:resource="&service;"/>
(4)  <daml:Class>

(5)  <rdf:Property rdf:ID="Computer">
(6)    <rdfs:label>Bookstore</rdfs:label>
(7)    <rdfs:subPropertyOf rdf:resource="&profile;serviceCategory"/>
(8)    <rdfs:domain rdf:resource="&service;serviceProfile"/>
(9)    <rdfs:range rdf:resource="&daml;#Thing"/>
(10) </rdf:Property>

(11) <rdf:Property rdf:ID="Travel">
(12)   <rdfs:label>Travel</rdfs:label>
(13)   <rdfs:subPropertyOf rdf:resource="&profile;serviceCategory"/>
(14)   <rdfs:domain rdf:resource="&service;serviceProfile"/>
(15)   <rdfs:range rdf:resource="&daml;#Thing"/>
(16) </rdf:Property>



Managing Changes

 What is Change Management?
 Detection

 Awareness that a change has occurred
 Subsequent identification of its cause

 Propagation
 Informing all concerned entities in the system that 

a change has occurred
 Reaction

 Executing a compensatory process that brings the 
system back to safe execution mode



Change Detection

 Service unavailability - agents send frequent 
alive messages to participant services

 Change to operations - compare service 
descriptions in the registries with the ones in the 
system

 Change in content - periodic invocation of the 
an operation and comparing the subsequent 
results



Change Propagation

 Web services participating in a service request 
are registered with a participant list

 Participant list is maintained by agents
 Agents initially add Web service descriptions to the 

list
 The Participant list is consulted before a service is 

invoked
 Agents remove the service description from the list if 

change occurs



Reaction to Change

 Selection of alternate Web services using 
ontologies

 Cancellation of request if no alternate service is 
available

 Reaction to internal change is in the form of 
reconsolidating the result



Change Management Algorithm
Input: request_time, participant_list 
{
  time = request_time
  while (time != 0)
    for each Web Service WS in participant_list
      send alive message to WS
      if not alive then 
        remove WS from participant_list
        call (Service Selection (service description (WS)))
      break
      global description = WS service description from global service registry
      if service description (WS) not equals global description
        remove WS from participant_list
        call (Service Selection (service description (WS)))
      break
      current data = invoke WS operation
      if current data not equals previous data
        call (Response Consolidation (current Data))
        break
    decrement time
}
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Related Work
 WebBIS

 Proposes mechanisms for detection, propagation, and 
reaction to change in e-services

 Uses Event-Condition-Action (ECA) rules and change 
operations for change management

 Our work extends WebBIS to provide support for Web service 
standards

 XLANG
 Implements exception handling and transaction rollback by 

initiating compensation processes
 Does not provide support for detection, propagation, and 

reaction to changes
 eFlow

 Uses the notion of process library to compose services
 Changes need to be predefined manually at the time of Web 

service composition



Conclusion

 We achieved success in fulfilling a service 
request using:
 Dynamic selection of Web services through 

the use of ontologies 
 Change management in Web service 

environments by using agents to detect, 
propagate, and react to changes



Questions?


