
Supporting Dynamic
Changes in Web Service
Environments

M. Salman Akram, Brahim Medjahed,
Athman Bouguettaya

E-Commerce and E-Government Research Lab
Department of Computer Science, Virginia Tech, USA

{salman, brahim, athman} @vt.edu

Agenda

 Introduction
 Web Service Requests
 Change Management
 Proposed Architecture
 Related work and Conclusion

The Web Service Model

0.0000

Computer

Web Service

Web Service

0.0000

0.0000

Service
Registry

Service
Consumer

Service
Provider

Publish
Find

message

exchange

has defines

Service Description

UDDI Publication

UDDI Inquiry

SOAP

WSDL

UDDI Registry

Web Browser

Scenario

NYSE
Web Service

CAC
Web Service

FTSE
Web Service

TSE
Web Service

New York
Stock

Exchange
(NYSE)

Financial
Times
Stock

Exchange
(FTSE)

Paris
Stock

Exchange
(CAC)

Tokyo
Stock

Exchange
(TSE)

Web
Services

Stock
Markets

Scenario (cont.)

Sample Request:
Sell 500 shares of IBM stocks at the NYSE if a
price of $21 dollars is reached within the next
half hour

User

Request Decompose
Request

Global Service
Registry

Consolidate
Response Participant

List

Parse
Request

Select
Services

Invoke
Services

Web Service

Web Service

...
Manage
Change

Response

Motivation

 Exploratory
 The process of selecting Web services is non-deterministic
 Web services are a priori unknown
 Services should be determined dynamically

 Volatile
 A Web service answering a request at a given time may not

be available to answer the same request in the future
 Services may become unavailable in the interval between

selection and invocation
 Service may become unavailable during the execution

 Dynamic
 Web service content provided by the operations may change

frequently
 Change may affect the overall execution of the request

Issues

 Web Service Discovery and Selection
 Select Web services with appropriate

functionality
 More than one service might have to be selected
 Must be discovered in a “reasonable” time

Issues (cont.)

 Adapting to Web Service Changes
 Detect, propagate, and react to all “significant”

changes in Web service environments
 Categories of changes:

 Internal
 Changes that occur inside a Web service (change in the

data provided by a Web service)
 Example: change in the price of a share

 External
 Changes that occur outside of a Web service (service

availability)
 Example: temporary or permanent unavailability of a Web

service that provides functionality for the NYSE

Using Ontologies for Dynamic Discovery

 Why Ontologies?
 Form a coherent slice of service space
 Provide sharing of service description knowledge
 UDDI was not designed to support relationships

between Web services
 Need to be familiar with the tModels in UDDI

 DAML-S
 Provides the ability to organize Web services into

ontologies
 Allows embedding relationship information into

service descriptions to facilitate dynamic discovery

Example Ontology Description
(1) <daml:Class rdf:ID="NYSE">
(2) <rdfs:label>NewYorkStockExchange</rdfs:label>
(3) <rdfs:subClassOf rdf:resource="&service;"/>
(4) <daml:Class>

(5) <rdf:Property rdf:ID="Computer">
(6) <rdfs:label>Bookstore</rdfs:label>
(7) <rdfs:subPropertyOf rdf:resource="&profile;serviceCategory"/>
(8) <rdfs:domain rdf:resource="&service;serviceProfile"/>
(9) <rdfs:range rdf:resource="&daml;#Thing"/>
(10) </rdf:Property>

(11) <rdf:Property rdf:ID="Travel">
(12) <rdfs:label>Travel</rdfs:label>
(13) <rdfs:subPropertyOf rdf:resource="&profile;serviceCategory"/>
(14) <rdfs:domain rdf:resource="&service;serviceProfile"/>
(15) <rdfs:range rdf:resource="&daml;#Thing"/>
(16) </rdf:Property>

Managing Changes

 What is Change Management?
 Detection

 Awareness that a change has occurred
 Subsequent identification of its cause

 Propagation
 Informing all concerned entities in the system that

a change has occurred
 Reaction

 Executing a compensatory process that brings the
system back to safe execution mode

Change Detection

 Service unavailability - agents send frequent
alive messages to participant services

 Change to operations - compare service
descriptions in the registries with the ones in the
system

 Change in content - periodic invocation of the
an operation and comparing the subsequent
results

Change Propagation

 Web services participating in a service request
are registered with a participant list

 Participant list is maintained by agents
 Agents initially add Web service descriptions to the

list
 The Participant list is consulted before a service is

invoked
 Agents remove the service description from the list if

change occurs

Reaction to Change

 Selection of alternate Web services using
ontologies

 Cancellation of request if no alternate service is
available

 Reaction to internal change is in the form of
reconsolidating the result

Change Management Algorithm
Input: request_time, participant_list
{
 time = request_time
 while (time != 0)
 for each Web Service WS in participant_list
 send alive message to WS
 if not alive then
 remove WS from participant_list
 call (Service Selection (service description (WS)))
 break
 global description = WS service description from global service registry
 if service description (WS) not equals global description
 remove WS from participant_list
 call (Service Selection (service description (WS)))
 break
 current data = invoke WS operation
 if current data not equals previous data
 call (Response Consolidation (current Data))
 break
 decrement time
}

Architecture

Request Manager
(RM)

Communication
Interface (CI)

Request
Decomposer

(RD)
User

NYSE
Service

CAC
Service

FTSE
Service

TSE
Service

DAML-S Registry

UDDI

Participant
List

AgentsRequest
Broker

Related Work
 WebBIS

 Proposes mechanisms for detection, propagation, and
reaction to change in e-services

 Uses Event-Condition-Action (ECA) rules and change
operations for change management

 Our work extends WebBIS to provide support for Web service
standards

 XLANG
 Implements exception handling and transaction rollback by

initiating compensation processes
 Does not provide support for detection, propagation, and

reaction to changes
 eFlow

 Uses the notion of process library to compose services
 Changes need to be predefined manually at the time of Web

service composition

Conclusion

 We achieved success in fulfilling a service
request using:
 Dynamic selection of Web services through

the use of ontologies
 Change management in Web service

environments by using agents to detect,
propagate, and react to changes

Questions?

