
1

A Broker Architecture for
Integrating Data Using a Web
Services Environment
Subtext: real application
integration of heterogenous autonomous evolving databases

Pennine Research Group
www.service-oriented.com

2

3

Authors

• Durham: K. H. Bennett, J. Xu, F. Zhu,
• Keele: O.P. Brereton, D. Budgen, , M.

Turner
• UMIST: J. Keane, I. Kotsiopoulos, O.

Almilaji, J.C. Chen, A. Owrak, N.E. Gold,
P.J. Layzell,

• Keith.bennett@durham.ac.uk

4

Overview

• We present results of a real experiment,
using distributed data access system,
using Websphere, J2EE

• First we explain hypothesis

5

Roadmap

• Assumptions
• Hypothesis

– Study
– Cost of ownership
– Evolution and change

• Experimental system
• Results from V1
• Conclusions, next stage

6

Assumptions: Distinctive Domains

• Systems Domain
– Well defined boundaries and requirements

• Business Domain
– Emergent Organisations

• “Organisations in a state of continual process
change, never arriving, always in transition”

D. Truex, R.Baskeville and H.Klein, “Growing Systems in Emergent Organizations”, Comm.ACM,
Vol.42, No.8, August 1999

7

Our key hypothesis

• One or more services are configured to
meet a specific set of requirements at a
point in time, executed, and disengaged.

• “Software as a Service”, or ultra-late
binding

• How did we establish this?

8

1. Research in Evolution

• 60-80% of lifetime costs of software relate
to change. Of that, most is due to
requirements change

• Evolution technologies
– Program comprehension, re-engineering,

reverse engineering and design recovery

• Maintainability not solved: needs new
approach; web services require change.

9

Evolution

• In our experience, it seems very difficult
to “bolt on” a good evolution or
maintenance solution to an existing
development method (e.g. formal
methods)

• It needs to be addressed from the outset
• We want to explore ultra-late binding as a

new approach to maintainability

10

2. User study

• Necessary and sufficient

• Personalisation

• Adaptable/ self-adaptation

• Distribution and granularity

• Transparency

• CONCLUSION: cost of ownership is bad
P.Brereton, D.Budgen, K.Bennett, M.Munro, P.Layzell, L.Macaulay, D.Griffiths and C.Stannett, “The
Future of Software: Defining the Research Agenda”, Comm. ACM, Vol.42, No.12, December 1999

11

The Vision

• Software moves from a PRODUCT to a
SERVICE.

• A SERVICE is something you find, use as and
when needed – and then discard.

• The user decides what services are needed, and
the technology negotiates, agrees and
implements their binding, which involves many
non-technical attributes (trust, cost, redress..)

12

Ultra late binding

• Automatic binding at execute time
requires non-functional attributes as well
as functional attributes to be bound

• It is here that many of the challenges (not
yet met by web services) apply

13

Serviceware
Payment terms
and conditions

Personalisation
and configuration

Privacy, protection
and security

Performance
criteria

Binding

System failure
recovery and

redress

Responsibilities
prior to use

Trust and
confidence

Software

negotiation
HARD

14

IBHIS - Information Broker for
Heterogeneous Information Systems

• Aim: To support decision making
processes where information is drawn
from a set of heterogeneous, autonomous
agencies

• Domain: Health and Social Care

15

IBHIS Overview

SOCIAL SECTOR

HEALTH
CLINIC

HOSPITAL

GP

Database

Database

Database Database

Database

Database

Database Database

DatabaseDatabase

Firewall Firewall

Firewall

Server Server

Database

Database Database

Database

Firewall

Server

Server

IBHIS
BROKER

User

ID C

Database

In mental health, there are 58 different services

16

Example

• Patient centred care
Disabled children with complex needs
Looked after children
Child protection
Single assessment process
Intermediate care
Mental Health
PRIVACY/SECURITY IS KEY

17

Service/Broker Approach

• Strengths of this approach against fully integrated fully integrated
systems (currently in fashion)systems (currently in fashion)
– Supports multiple, independent data sources
– Handles syntactic, semantic and system

heterogeneity
– Deals with globally distributed information
– A pathway towards discovery and access of new

Information Resources with the minimum of human
intervention

18

Key Concepts
• Use of service-based architecture to:

– Integrate information
– Accommodate evolution of the broker
– Ease adaptation to change in organisational

structures and related data structure
• Exercise custodianship, authentication and ethical

control of information
• Creating integrated, person-centred views of

need and delivery whilst retaining professional
responsibility

19

[Prototype Architecture]
• User queries IBHIS, IBHIS uses federated schema to

interrogate ‘local’ data sources, and coalesces result
• Based on statically-bound set-up knowledge of data

sources (bound in at initialisation time)
• Build federated schema from local schemas – manual
• User profile <role>, and user name
• All queries checked for access rule compliance
• All queries and results recorded with time-log
• Model allows for local data sources to themselves be

federated systems or even adjoining IBHIS systems

20

Access
 Rule Service

Audit Service

System Audits
per Registration

Data Sources
User Profiles

User Audits
per Session

Federated
Query
Audit

Federated
Record
Audit

GUI

IBHIS Set-up
Registry Service

Schema Integration
Service

Ontology ServiceLocal
Data Service

User Profile Set-up
User Setup

Database

Federated
Query Service

Query Decomposer

Query Integrator

Local
Data Service

Database

Federated
Schema Service

Federated Schema

Access Rules

IBHIS
BROKER

21

Results

• System implemented across 3 sites,
using websphere, J2EE

• Used Oracle, DB2, mySQL
– Basic patient information (Keele)
– Treatment history (UMIST)
– Further appointments (Durham)

• [Extensive work on domain analysis – see
papers]

22

R1: Architecture

• V1 used a tightly coupled federated DBS,
built at design time manually

• Service provided different views (schema)
according to access rules

• Good for static data sources, and few of
them; poor for changing schemas

• Problems really due to FDBS

23

R2: Service descriptions

• WSDL used for each web service –
created at design time

• Adequate for V1, but not for general data
sources from autonomous organisations

• We need to use an ontology approach.
• No non-functional meta data used.

24

R3: Message mechanism

• SOAP/RPC is used in prototype 1, which
is tightly-coupled and signatures are static

• Document-based asynchronous message
using XML should be employed, which will
make integrated system easier to meet
the changes of individual services owned
by autonomous owner.

25

R4: Service registry

• We used a DB2 registry with a central
manager

• Basically a statically set up directory of
data items – locate and bind data sources
at run time.

26

Web services

• Platform, language and implementation
(and IDE) independence largely achieved
(minor differences from IDEs).

• SOAP unifying XML data format was
pivotal.

• Independence of service and service
description (and thus call)

27

Websphere

• Good facilities for implement, test, deploy
• IDE had several time saving facilities
• Concurrent Versions (open source plug in

for version control)
• Some early V5 problems

28

Summary

• V1 much too static
• V2 experiments with more dynamic

architecture

29

Summary

• We need much more work on a (data)
web service description languages

• We need to exploit indirection and late
binding to achieve evolution e.g. inclusion
of new data sources.

30

V2 - wrap

Data intensive
Service

Wrapper

Internal user (Doctor)

External user

Eg Doctor’s
records

Manual with tool support

31

V2 integrate

Ontology

External data
access

IBHISShared external
terminology

e.g. MEDINFO

32

V2 composition

Ontology

External data
access

IBHIS
Shared external
terminology

Policy for
access

Metadatabase

OASIS RBAC

33

V2 transform

db

Ontology

External data
access

IBHIS
Shared external
terminology

Policy for
access

Metadatabase

OASIS RBAC

OGSA-DIAData access service

DAML-S
OWL-S

34

Conclusion (the gap)

Service App layer (applications created “on demand” from smaller services

Service integration layer

Service transport layer (using Globus, J2EE etc)

V1 has made minor impact on middle layer
V2 is making a much bigger in-road

35

Finally

• Demand led computing is very different to
supply side led

• Evolution is our real challenge – hardly
solved yet: needs technical and business
(market) contributions

• Evidence based engineering for results.

36

Acknowledgements

• To Colleagues in the Pennine Research
Group

• To EPSRC for funding

37

Markets

• CS - likes to address very general
search and match problems

• Real markets are often not open (eg
kaizen)

• Supply chains
• Market will fill need if money to be made
• Compositions can be bought
• Use expertise of marketing and business

school experts

