
Supporting Dynamic
Changes in Web Service
Environments

M. Salman Akram, Brahim Medjahed,
Athman Bouguettaya

E-Commerce and E-Government Research Lab
Department of Computer Science, Virginia Tech, USA

{salman, brahim, athman} @vt.edu

Agenda

 Introduction
 Web Service Requests
 Change Management
 Proposed Architecture
 Related work and Conclusion

The Web Service Model

0.0000

Computer

Web Service

Web Service

0.0000

0.0000

Service
Registry

Service
Consumer

Service
Provider

Publish
Find

message

exchange

has defines

Service Description

UDDI Publication

UDDI Inquiry

SOAP

WSDL

UDDI Registry

Web Browser

Scenario

NYSE
Web Service

CAC
Web Service

FTSE
Web Service

TSE
Web Service

New York
Stock

Exchange
(NYSE)

Financial
Times
Stock

Exchange
(FTSE)

Paris
Stock

Exchange
(CAC)

Tokyo
Stock

Exchange
(TSE)

Web
Services

Stock
Markets

Scenario (cont.)

Sample Request:
Sell 500 shares of IBM stocks at the NYSE if a
price of $21 dollars is reached within the next
half hour

User

Request Decompose
Request

Global Service
Registry

Consolidate
Response Participant

List

Parse
Request

Select
Services

Invoke
Services

Web Service

Web Service

...
Manage
Change

Response

Motivation

 Exploratory
 The process of selecting Web services is non-deterministic
 Web services are a priori unknown
 Services should be determined dynamically

 Volatile
 A Web service answering a request at a given time may not

be available to answer the same request in the future
 Services may become unavailable in the interval between

selection and invocation
 Service may become unavailable during the execution

 Dynamic
 Web service content provided by the operations may change

frequently
 Change may affect the overall execution of the request

Issues

 Web Service Discovery and Selection
 Select Web services with appropriate

functionality
 More than one service might have to be selected
 Must be discovered in a “reasonable” time

Issues (cont.)

 Adapting to Web Service Changes
 Detect, propagate, and react to all “significant”

changes in Web service environments
 Categories of changes:

 Internal
 Changes that occur inside a Web service (change in the

data provided by a Web service)
 Example: change in the price of a share

 External
 Changes that occur outside of a Web service (service

availability)
 Example: temporary or permanent unavailability of a Web

service that provides functionality for the NYSE

Using Ontologies for Dynamic Discovery

 Why Ontologies?
 Form a coherent slice of service space
 Provide sharing of service description knowledge
 UDDI was not designed to support relationships

between Web services
 Need to be familiar with the tModels in UDDI

 DAML-S
 Provides the ability to organize Web services into

ontologies
 Allows embedding relationship information into

service descriptions to facilitate dynamic discovery

Example Ontology Description
(1) <daml:Class rdf:ID="NYSE">
(2) <rdfs:label>NewYorkStockExchange</rdfs:label>
(3) <rdfs:subClassOf rdf:resource="&service;"/>
(4) <daml:Class>

(5) <rdf:Property rdf:ID="Computer">
(6) <rdfs:label>Bookstore</rdfs:label>
(7) <rdfs:subPropertyOf rdf:resource="&profile;serviceCategory"/>
(8) <rdfs:domain rdf:resource="&service;serviceProfile"/>
(9) <rdfs:range rdf:resource="&daml;#Thing"/>
(10) </rdf:Property>

(11) <rdf:Property rdf:ID="Travel">
(12) <rdfs:label>Travel</rdfs:label>
(13) <rdfs:subPropertyOf rdf:resource="&profile;serviceCategory"/>
(14) <rdfs:domain rdf:resource="&service;serviceProfile"/>
(15) <rdfs:range rdf:resource="&daml;#Thing"/>
(16) </rdf:Property>

Managing Changes

 What is Change Management?
 Detection

 Awareness that a change has occurred
 Subsequent identification of its cause

 Propagation
 Informing all concerned entities in the system that

a change has occurred
 Reaction

 Executing a compensatory process that brings the
system back to safe execution mode

Change Detection

 Service unavailability - agents send frequent
alive messages to participant services

 Change to operations - compare service
descriptions in the registries with the ones in the
system

 Change in content - periodic invocation of the
an operation and comparing the subsequent
results

Change Propagation

 Web services participating in a service request
are registered with a participant list

 Participant list is maintained by agents
 Agents initially add Web service descriptions to the

list
 The Participant list is consulted before a service is

invoked
 Agents remove the service description from the list if

change occurs

Reaction to Change

 Selection of alternate Web services using
ontologies

 Cancellation of request if no alternate service is
available

 Reaction to internal change is in the form of
reconsolidating the result

Change Management Algorithm
Input: request_time, participant_list
{
 time = request_time
 while (time != 0)
 for each Web Service WS in participant_list
 send alive message to WS
 if not alive then
 remove WS from participant_list
 call (Service Selection (service description (WS)))
 break
 global description = WS service description from global service registry
 if service description (WS) not equals global description
 remove WS from participant_list
 call (Service Selection (service description (WS)))
 break
 current data = invoke WS operation
 if current data not equals previous data
 call (Response Consolidation (current Data))
 break
 decrement time
}

Architecture

Request Manager
(RM)

Communication
Interface (CI)

Request
Decomposer

(RD)
User

NYSE
Service

CAC
Service

FTSE
Service

TSE
Service

DAML-S Registry

UDDI

Participant
List

AgentsRequest
Broker

Related Work
 WebBIS

 Proposes mechanisms for detection, propagation, and
reaction to change in e-services

 Uses Event-Condition-Action (ECA) rules and change
operations for change management

 Our work extends WebBIS to provide support for Web service
standards

 XLANG
 Implements exception handling and transaction rollback by

initiating compensation processes
 Does not provide support for detection, propagation, and

reaction to changes
 eFlow

 Uses the notion of process library to compose services
 Changes need to be predefined manually at the time of Web

service composition

Conclusion

 We achieved success in fulfilling a service
request using:
 Dynamic selection of Web services through

the use of ontologies
 Change management in Web service

environments by using agents to detect,
propagate, and react to changes

Questions?

