

Peer-to-Peer Process Execution with OSIRIS

Christoph Schuler*, Roger Weber*, Heiko Schuldt#, Hans-J. Schek*

1st International Conference on Service Oriented Computing, December 2003, Trento, Italy

*) Database Research Group, Swiss Federal Instit. of Technology ETH, Zurich, Switzerland #) University for Heath Informatics and Technology UMIT, Innsbruck, Austria

Outline

• Internet-scale Web Service Composition

- Composing Web services
- Services everywhere
- OSIRIS Architecture
 - Peer-to-Peer Process Execution
 - Metadata Replication
- Performance Evaluation
 - Scalability Characteristics
- Conclusion and Outlook

Web Service Composistion

- "Mega programming" or
 "Programming in the large" combine existing service to value added services
 - Recursively reusing services
- Processes allows for visual programming .
- What infrastructure to define and execute processes?
 - BPEL4WS Modeling Tool
 - State-of-the-art process management system

Scale to internet size

- Service composition on Internet-scale
- Number of services increases dramatically
 - On-Demand Computing
 - GRID Initiatives
- Continues fluctuations on system configuration
- What system architecture can manage this situation ?
 - Classical process management system?
 - In 10 years?

Existing Concepts

- Process Management
 - Programming in the Large
 - Visual Programming
 - Reuse of existing services
 - Composite Services
- GRID Computing
 - Self adaptaion
 - On demand computing
 - Resource Management
 - Publish-and-Subscribe
 - Load Balancing
 - Service Bus

Existing Concepts

- **Peer-to-Peer**
 - Direct communication
 - Scalability
 - Spans large scale communities

- **Database Technology**
 - Atomicity —
 - Consistency
 - Isolation
 - Durability

OSIRIS Idea

- **Processes** to combine services
- Peer-to-peer execution of processes
- Support for dynamic system configuration (GRID)
- Resource and Metadata Management (GRID)
- **Providing Execution Guarantees** as known from databases
- $\rightarrow \underline{OSIRIS} = \underline{O}pen \underline{S}ervice \\ \underline{I}nfrastructure for \underline{R}eliable \\ and \underline{I}ntegrated Process \\ \underline{S}upport$

OSIRIS Architecture

Late Service Binding - Routing

- More than one provider of a service type.
- Process definition
 - No concrete binding
 - Service Type
 - Semantic Specification
- **Publish-to-ONE** routes process instance to subsequent step
 - → Cluster Subscriber
 - → "Service Bus"
- OSIRIS implements Publish-to-ONE without
 - Central hub
 - Broadcast

Metadata Replication

Replication Example: Process Data

Workload Load Balancing

- Workload balancing allows for selecting optimal service provider
- Exploit workload information to route process instance.
- Workload information must be locally available.
- Global **load repository** subscribes for significant changes of provider workload
- And **publishes** global changes to peers

Providing "Database like" Guarantees

Compensated Failed

- Transactional Processes
 - Guaranteed Termination
 - compensation and alternative execution paths
- Persistent process routing
 - → 2PC Protocol from Peer to Peer
 - → Reliability Service
- Concurrency Control on Service level
 - → Intercepting Service Call
 - → Global Concurrency Control Service

Providing "Database like" Guarantees

- Transactional Processes
 - Guaranteed Termination
 - compensation and alternative execution paths
- Persistent process routing
 - → 2PC Protocol from Peer to Peer
 - → Reliability Service
- Concurrency Control on Service level
 - → Intercepting Service Call
 - → Global Concurrency Control Service

Providing "Database like" Guarantees

- Transactional Processes
 - Guaranteed
 Termination
 - compensation and alternative execution paths
- Persistent process routing
 - → 2PC Protocol
 - → Reliability Service
- Concurrency Control on Service level
 - → Intercepting Service Call
 - → Global Concurrency Control Service

OSIRIS: The big Picture

Outline

• Internet-scale Web Service Composition

- Composing Web services
- Services everywhere
- OSIRIS Architecture
 - Peer-to-Peer Process Execution
 - Metadata Replication
- Performance Evaluation
 - Scalability Characteristics
- Conclusion and Outlook

Evaluation Setting

- Centralized vs. Peer-to-Peer process execution
 - One basic process type
 - Every activity takes 2s
- $\bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc$
- Increasing number of providers and processes

Process Throughput – Centralized vs. Peer-to-Peer

- Increasing overall load in the system
 - Centralized Approach: with 8 nodes, the limit of scalability is reached
 - OSIRIS (P2P): scales well, already 16 peers sufficient to cover the full load

Process Response Times – Centralized vs. Peer-to-Peer

- Same scenario than before
 - Centralized Approach: coordinator as bottleneck – adding more than 8 nodes will not further decrease avg. response time

OSIRIS (P2P): no bottleneck, almost perfect scalability

- Dramatically increasing number of services and processes in the internet need a new architecture to high scalability.
- Combining ideas from different areas together with a sophisticated replication mechanism allows for realizing a truly distributed peer-to-peer process management system.
- The OSIRIS infrastructure has a high potential to scale with respect to increasing number of providers as well as to increasing number of processes.
- Applied to Information Space Management of ETHWorld (Virtual Campus of ETH Zurich)
- First evaluation results presented here support the scalability predictions.

Outlook

- A more complex benchmark setting will show, for what class of application OSIRIS architecture is best suited.
- What concepts can be applied to partially improve existing approaches.
 - Service GRID infrastructure
 - Central process management
- Acknowledgment: Work supported by the IBM Labs Germany, Böblingen with a IBM Hardware SUR Grant

Thank you ...

Questions?