
Model Checking Correctness
Properties of Electronic
Contracts

Carlos Molina-Jimenez
Carlos.Molina@ncl.ac.uk
Joint work with: Ellis Solaiman and Santosh Shrivastava
University of Newcastle upon Tyne

ICSOC 2003, Trento, 15-18 Dec, 2003

Outline of the presentation

 Motivation for this presentation.
 Where are business contracts needed?.
 Representation of contracts with FSMs.
 Inconsistencies in contracts.
 Validation.
 Conclusions.

The general picture

 Two or more autonomous business
enterprises (E1 , E2).

 Wish to establish a business relationship.
 Cos’ they’re mutually suspicious, they need a

contract.

E2
business

relationshipE1

BobAlice

The general picture (cont.)

E2

Bob (purchaser)

E1

Alice (supplier)

Alice’s Obligations

Alice’s Rights Bob’s Rights

Bob’s Obligations

AGREEMENT

Signatures
Manager E1 Manager E2

Alice’s Obligations

Alice’s Rights Bob’s Rights

Bob’s Obligations

AGREEMENT

Signatures
Manager E1 Manager E2

… Contract
5. Offers
5.1 The supplier may use his discretion to send offers to the
purchaser.
5.2 The purchaser is entitled to accept or reject the offer,
but he shall notify his decision to the supplier.
6. Commencement and completion
6.1 The contract shall start immediately upon signature.
…

W
e w

an
t

ex
ec

ut
ab

le
co

nt
ra

cts

Executable contract architecture

check Alice’s ROs

check Bob’s ROs

Alice’s E1 Bob’s E2executable contract
(for enforcing ROs)

send offer

reply
 (Y/N)

Sup Pur

E-Enterprise, ROs- Rights and Obligations, Sup-supplier, Pur-purchaser

The problem

 Business contracts are full of logical inconsistencies.
 “… the purchaser must send the payment to the supplier by 19

Dec 2003.”
 Contracts fail to specify:

 What to do if the payment is incorrect.
 How many times can the purchaser send incorrect payments.
 That receiving of payments, purchase orders, complains, etc. must (must

not) be acknowledged.
 Inconsistencies are meant to be detected, interpreted and

corrected by humans (common sense).
 Computers don’t have common sense.

 Inconsistencies bring executable contracts into unexpected
situations.

Contract validation process

 Contract should be validated before
implementation.

1. Edit the English text contract.
2. Convert the English text contract into a formal

notation.
3. Validate the formal notation.

1. If inconsistencies were found go to 1.

4. Implement contract.

Contract inconsistencies

 There are two sources of contract inconsistencies.
1. Internal enterprise policies conflicting with contractual

clauses.
 The internal policies of E1 prohibit Bob from placing

payments for chickens.
2. Inconsistencies in the interaction between the business

partners.
 Alice is waiting for payment while Bob is waiting for item.
 Alice is in end state while Bob is still running waiting for

a confirmation.
 In this talk (paper), we address the second issue

only.

Formal representation of contracts
 There’re several approaches.
 FSMs is (perhaps) the simplest one!.
 FSMs work PRETTY WELL for representing

 Contractual inter-organisational interactions.

E2
business

interactionE1

BobAlice

E2
business

interactionE1

BobAlice

 Why do I like FSM-contracts?
 Cos’ they can be validated using standard model checkers.

A FSM-based executable contract

E1 E2

Waiting
for item

Editing
payment

Pay/SendPay

purchaser

(1st event)(2nd event)

(3rd event)

ex
e-

co
nt

ra
ct

Waiting
for

payment

Shipping
item

PayRcvd/StorePay

supplier

ItemReady/SendItem

Bob
Alice

ItemRcvd/StoreItem

legend: event/operation

“The purchaser shall pay for the e-book before receiving it. The
supplier shall send the e-book after receiving the payment.”

Validation of correctness requirements

 The contracts are equivalent to communication protocols.
 They need to be validated to detect inconsistencies such as

 Alice is waiting for the payment to arrive before shipping the
item while Bob is waiting for the item.
 Deadlocks

 Alice is in end state while Bob is waiting for a confirmation.
 Incorrect termination

 Alice receives a second purchase order while she’s expecting a
payment.
 Unsolicited message

 Bob collected the item before paying for it.
 Precedence of operations

 Other correctness requirements.

Validation of correctness requirements
with Spin
 In the paper we show how to use Spin for

detecting this kind of inconsistencies in
contracts.

 Spin is a mature and widely-used (in the
academic community) model checker.

 It validates programs (eg contracts) written in
Promela (modelling language).

Conclusions

 FSMs are powerful enough for representing
contracts that control inter-organisational
interactions.

 Contracts represented as FSMs can be easily
validated using standard model checkers (e.g
Spin).

