
Model Driven Service Composition

Content

• Motivation

• Cornerstones of our approach

• Functional requirements for service composition

• Information model for service composition

• Process of service composition development

• Conclusions

• Question and remarks

Motivation

• Platform neutral nature of web services creates the
opportunity to develop business processes by using and
combining existing web services

• Service composition is too complex and too dynamic to handle
manually (e.g. a vast service space to search, a variety of
services to compare and match, and different ways to
construct composed services)

• However, current composite web service development and
management solutions are very much a manual activity,
which require specialized knowledge and take up much time
and effort.

Cornerstones of our approach

• We use a model driven approach to facilitate the development
and management of dynamic service compositions
– Functional requirements

– Information meta model

– Architecture

– Algorithm

• To govern and steer the process of service composition
development we utilise rules
– Classification

– Specification

– Application

Functional requirements

• Service composition development
The application developer interacts with the service composition system to
generate a business process by composing services. The use case starts when
the developer sends a request. The system at the end produces an executable
service composition.

• Service composition management
The application developer interacts with the service composition system to
execute and manage compositions. This use case begins when the developer
indicates that he wants to execute a service composition. In response the
system gathers the required information and subsequently executes the
composition. During run-time the developer may interact with the service
composition system to make modifications.

Service composition development

• Definition phase
The system starts by defining a composite service in an abstract
manner, e.g. with regard to offered functionality and constraints.

• Scheduling phase
 Next, the system determines how and when services should run and

prepares them for execution.

• Construction phase
Then, the system proceeds to construct an unambiguous composition
of concrete services out of a set of desirable or potentially
available/matching constituent services.

• Execution phase
Lastly, the system prepares the constructed composed services for
execution.

Information model

• Is an abstract meta-model that represents the building blocks of all
possible service compositions.

• Models the components required for a given composition as well as their
inter-relationships. Relationships in the IM indicate how a composition is
constructed.

• All the required information is represented as classes containing special
purpose attributes, referred to as composition classes.

• Specific instances of the model are generated by populating its classes.
Class instances are referred to as composition elements.

• Is expressed in UML to support the development of technology
independent service composition definitions.

Sample IM instance

Service Composition Development Process

• A concrete service composition needs to link elements such as
"service provider" to “role", “role" to "activity", "activity" to
"flow", and so on, to construct an instance of the service
composition IM.

• These associations are constrained by means of rules, referred
to as composition rules
– Are often deeply embedded in application code, whereas
– Extraction and explicitness increases ease of management (defined and

versified) as well as execution consistency.

• Composition rules are expressed in the Object Constraint
Language (OCL). We apply these rules to constrain
composition element attributes values and associations. In
other words, we use them to drive the service composition
development process.

Rule classification

• Structural rules
Guide the process of structuring, scheduling and prioritizing activities.

• Behavioral rules
Specify conditions for the composition behavior, e.g to guard activities.

• Data rules
Control the use of data by activities, data dependencies, and etceteras.

• Resource rules
Guide the use of resources, e.g. in terms of selecting providers.

• Exception rules
Govern the exceptional behavior, e.g. fault handling.

Service Composition Development System

System Algorithm

Definition phase
1) Determine activities
2) Add message exchanging behavior
3) Define exception behavior
4) Place constraints

Scheduling phase
5) Correlate messages
6) Structure activities

Construction phase
7) Compose abstract services
8) Assign concrete services

Execution phase
9) Generate executable specification, e.g. in BPEL

Examples

• Add message exchanging behavior
for each Activity

 do while (no Input for Activity)
 apply assignAsInput in Message to
 every Message/Activity combination

• Definition of assignAsInput:

message.parts->includesAll(activity.inputs)

Examples, continued

• Suppose we have the following elements:
– FlightActivity: inputs=“Date,From,To”

– Message1: parts=“CheckinDate,Duration,HotelName”

– Message2: parts=“Date,ReturnDate,From,To,Class,MealPreference”

• Application of assignAsInput then results in assigning
Message2 to FlightActivity as this activity’s input:
– First Message1 is tried, but the resulting activity/message

combination does not meet the requirements in the rule (not
surprisingly, since this message contains hotel reservation info)

– Subsequently a combination with Message2 is tested; this
combination is successful, because this message provides a
superset of data required for FlightActivity.

Examples, continued

• Compose abstract services
for each Activity

 do while (no Role for Activity)
 apply performActivity in Role to every
 Role/Activity combination

• Definition of performActivity:

role.capabilities->exists(activity.function)

 AND role.permissions->exists(activity.function)

Example, continued

• Suppose we have the following elements:
– FlightActivity: function=“FlightBooking”

– Role1: capabilities=“FlightBooking”, permissions=“FlightBooking”

– Role2: capabilities=“CarRental”, permissions=“CarRental”

• Application of performActivity then results in assigning
Role1 to FlightActivity as this activity’s abstract service:
– When Role1 is tried, the resulting activity/role combination meets

the requirements in the rule and thus is suitable to be assigned to
FlightActivity as its abstract service

• Note: if there would not have been a suitable role, then the
system would have consulted the user to provide the
service requirements for FlightActivity.

Conclusions

• Current standards (e.g. BPEL, BPML) are not suitable
for flexible and dynamic service composition.

• Our approach does cater this by:

– Using a model driven approach to facilitate the development
and management of service compositions, allowing flexible
and rapid development and delivery of service compositions
based on proven and tested models, as such supporting the
service composition life-cycle.

– Applying rules to drive the service composition development
process, as such paving the way towards developing
dynamic service compositions.

Future research

• Just to mention a few:

– Investigate and formally verify mapping and conformance
between compositions

– Design of the rule mechanism to manage and apply the
composition rules in accordance with the defined algorithm

– Development of a change system to manage the evolution
of composition elements and rules, and service
composition specifications

Questions/remarks

?

