
Peer–to–Peer Process Execution with Osiris

Christoph Schuler1, Roger Weber1, Heiko Schuldt2, and Hans-J. Schek1

1 Swiss Federal Institute of Technology (ETH),
CH–8092 Zurich, Email: {schuler,weber,schek}@inf.ethz.ch

2 University for Health Informatics and Technology Tyrol (UMIT),
A-6020 Innsbruck, Email: heiko.schuldt@umit.at

Abstract. Standards like SOAP, WSDL, and UDDI facilitate the prolif-
eration of services. Based on these technologies, processes are a means to
combine services to applications and to provide new value-added services.
For large information systems, a centralized process engine is no longer
appropriate due to limited scalability. Instead, in this paper, we pro-
pose a distributed and decentralized process engine that routes process
instances directly from one node to the next ones. Such a Peer-to-Peer
Process Execution (P3E) promises good scalability characteristics since
it is able to dynamically balance the load of processes and services among
all available service providers. Therefore, navigation costs only accumu-
late on nodes that are directly involved in the execution. However, this re-
quires sophisticated strategies for the replication of meta information for
P3E. Especially, replication mechanisms should avoid frequent accesses
to global information repositories. In our system called Osiris (Open
Service Infrastructure for Reliable and Integrated Process Support), we
deploy a clever publish/subscribe based replication scheme together with
freshness predicates to significantly reduce replication costs. This way,
OSIRIS can support process-based applications in a dynamically evolv-
ing system without limiting scalability and correctness. First experiments
have shown very promising results with respect to scalability.

1 Introduction

Modern technologies like XML, SOAP, and WSDL provide a simple yet power-
ful means to publish information services and to access services. The platform
independent definitions of these technologies further simplify the composition of
services to offer new value added services [5]. One way to achieve this goal is
to define transactional processes [20] over web services. Such processes compose
web service calls in an application-specific invocation order –by defining control
and data flow– together with transactional guarantees. Each activity of a process
corresponds to the invocation of a (web) service. Programming using processes
is referred to as “programming in the large” or “mega programming” [24]. Es-
sentially, processes are again (higher-level) web services, i.e., they are accessible
via SOAP (Simple Object Access Protocol) [21] and described by a WSDL (Web
Service Description Language) [26] document such that other users can easily
integrate them into even larger processes.

sannico
1 Introduction
Modern technologies like XML, SOAP, and WSDL provide a simple yet powerful
means to publish information services and to access services. The platform
independent definitions of these technologies further simplify the composition of
services to o�er new value added services [5]. One way to achieve this goal is
to define transactional processes [20] over web services. Such processes compose
web service calls in an application-specific invocation order –by defining control
and data flow– together with transactional guarantees. Each activity of a process
corresponds to the invocation of a (web) service. Programming using processes
is referred to as “programming in the large” or “mega programming” [24]. Essentially,
processes are again (higher-level) web services, i.e., they are accessible
via SOAP (Simple Object Access Protocol) [21] and described by a WSDL (Web
Service Description Language) [26] document such that other users can easily
integrate them into even larger processes.




