
Coordination and composition
Panel on Service Modeling

Fabio Casati
SOC’03 - December 16, 2003



page 219/01/04

Conversations and protocols

suppliercustomer

1:requestQuote

2:orderGoods

4:makePayment

3:confirmOrder

• More than interfaces
• As important as IDLs
• Mindshare, and a real need 

– needed because of loose coupling
– simplifies development/mgmt



page 319/01/04

Multi-party conversations

• Tons of different models available

suppliercustomer

1:requestQuote

2:orderGoods

5:makePayment

warehouse

3:checkShipAvailable
7:getShipmentDetail

8:confirmShipment
9:confirmShipment

6:orderShipment

4:confirmOrder



page 419/01/04

Service-centric conversation models

invoke 
checkShipAvailable

send confirmOrdersend cancelOrder

receive requestQuote

reply requestQuote

receive orderGoods

receive makePayment

send orderShipment

supplier
receive confirmShipment

It looks like a “traditional” 
workflow, but it’s not.



page 519/01/04

Why protocols? development support

• generate skeletons
• research issues, 

probably addressed in 
many communities

service skeleton

Protocol specs

protocol 
compiler

service 
implementation

add biz logic

top down

Protocol specs

protocol 
generator

service 
implementation

bottom up



page 619/01/04

Why protocols? middleware: routing, validation, 
logging

P1

P2, P3

P4, P5

conversation 
controller

object for P1

object for P2

object for P3

object for P4

object for P5

P1

P2

P3

P4

P5

service 
requestor

service 
requestor

service 
requestor

service provider

protocol defs
(BPEL)

logs

also helps 
monitoring/mgmt



page 719/01/04

Why protocols? matchmaking

supplier
A

customer broker

•lots of interesting problems wrt syntactic compatibility
•in principle, it comes for free! All done by the middleware

supplier
B

supplier
C



page 819/01/04

Coordination at different levels

• Transaction
• Security 
• Meta-coordination
• …

• Some needed because no central middleware
• interactions among the different protocols (and related 

middleware) still to be studied 



page 919/01/04

Composition

• implementation technology
• internal (unlike protocols) 
• enabled by SOA

invoke 
checkLocalStock

invoke 
checkShipAvailable

send confirmOrder

inStock=false

send cancelOrder

inStock=true

shippingAvail=true

shippingAvail=false

receive 
orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

local service 
offered by the 

supplier
checkLocalStock



page 1019/01/04

What’s new

• It works! (maybe)
– secret is in the components, not the composer

• Implements a protocol, not an operation
– interactive/cooperative, not a dictatorship
– languages designed with this philosophy from the start
– best aspect of BPEL

• Push model
• Standards (??) and integration with other standards
• Tools: built on top of the middleware stack – much 

easier to develop and deploy
– cheaper, even free
– can install in hours, not weeks



page 1119/01/04

why XML?

• people understand it
• tools understand it

– validate, parse, query,…
• consistent with other WS standards

• end users do not care



page 1219/01/04

Is the flow representation enough?

• key is standardization of components and better tools
– browse services
– drag ‘n drop services into the canvas
– integrate composition with ad hoc programming
– testing, tracking, analysis

• this is more important than the flow model
• issues such as brokering, dynamic binding, semantics, 

automated intelligent composition, not essential now.





page 1419/01/04

Essentials

• composition great opportunity
– can succeed where previous attempts have failed
– why?

• Implement a service, not an operation
• External and internal specifications

– coordination and composition go together
• Standardization (?)



page 1519/01/04

Essence of Web services approach

• services
• standards
• decentralized 

protocols

internal 
infrastructure

suppliercustomer

warehouse

internal 
infrastructure

internal 
infrastructure

Web 
service

Web 
service Web 

service



page 1619/01/04

Composition middleware

Web 
service

Web 
service

Web 
service

Web 
service

Web 
service

(composite) Web service

other tiers

service composition support 
(modeling and execution)

Web services middleware

Company A Company B 

Company C 

Company D composition models
(BPEL)

invoke 
checkShipAvailable

receive requestQuote

reply requestQuote

receive orderGoods

send confirmOrder

receive makePayment

send orderShipment

receive confirmShipment

send cancelOrder

logs



page 1719/01/04

Open problems

• Metric definition and computation framework
– generic but simple
– SLAs and contracts

• How to bundle intelligence into the tool
– correlation, prediction, intelligent analysis, sensitivity
– outliers
– specialized for some problems, or generic

• Feedback
– how to provide controlled automation
– manageable processes
– manageable services
– framework to easily define and manage policies



page 1819/01/04

Message

• Management as a key problem/opportunity in WS
• Web services enable biz. aware management

– B2B, service oriented architectures
– Standards

• Conversations, compositions, correlation
• new problems, higher expectations

– data mining is a key technology
• Assess, advice, act



page 1919/01/04

Grid computing

• “…a way of organizing computing resources so that they 
can be flexibly and dynamically allocated and accessed, 
often to solve problems requiring many organizations’ 
resources…” [OGSI Primer]

• originally, a network (protocols and conventions) for 
sharing cycles for compute-intense scientific 
applications

• now, a service-oriented connecting architecture for 
collaborative applications requiring access to global 
resources



page 2019/01/04

Global Grid Forum (GGF)

• GGF is the standards body for the Grid
• GGF is to Grid as W3C is to the Web
• Composed largely of academics, but being 

increasingly influenced by industry (IBM, Sun, 
Fujitsu, HP, Platform, Avaki, …)

• Community has resource sharing as a mindset
– Many come from scientific background where resources 

are scarce, and sharing is common
– Growing up to broader view of “resources” and stricter 

need for access control



page 2119/01/04

OGSI and OGSA

• OGSI (Open Grid Services Infrastructure):
– A Service Component model building on Web 

Services/WSDL
• Support for: transient services, Life-cycle, Registration, 

Notification, etc. 

• OGSA (Open Grid Services Architecture)
– An umbrella for identifying services of importance to the 

Grid
– All services will be OGSI-compatible
– Examples: Logging, Workflow, Reservation, 

Instrumentation/Monitoring, Cycle scavenging, …



page 2219/01/04

Grid services

• All services in the service-oriented architecture of the 
Grid must adhere to a service-component model 
prescribed by OGSI.

• In particular, OGSI has defined
– extensions to WSDL 1.1 to encapsulate state of a service
– a port type called “GridService” that provides basic 

functionality such as identification and lifecycle to every 
service

– several port types (factories, service grouping, agreements, 
etc) for sharing resources represented as services


