
Chair of Software Engineering

Contracts, concurrency

and SCOOP

for Web Services

Bertrand Meyer

Professor of software engineering, ETH Zurich
Founder and chief architect, Eiffel Software

Trento, December 2003

Chair of Software Engineering

The traditional programming world

 Sequential

 Used to be messy

 Still hard but:
 Structured programming
 Well-understood basic structures
 Data abstraction & object technology
 Design by Contract
 Genericity, multiple inheritance
 Architectural techniques
 Much higher level than 20, 15, 10 years ago

 Switch from operational techniques to logical deduction (e.g.
invariants) allows static reasoning

Chair of Software Engineering

Design by Contract™

 Get things right in the first
place

 Automatic documentation

 Self-debugging, self-testing code

 Proper handling of abnormal cases (exceptions,
failures)

 Get inheritance right

 Give managers the right control tools

Chair of Software Engineering

 Postcondition:
supplier obligation

Contracts in Eiffel

store (buf: BUFFER [INTEGER]; value: INTEGER) is
-- Store value into buffer.

 require
not buf.is_full
value > 0

 do
buf.put (value)

 ensure
not buf.is_empty

 end
...

 Precondition:
client obligation

Chair of Software Engineering

The traditional programming world

 Sequential

 Used to be messy

 Still hard but:
 Structured programming
 Well-understood basic structures
 Data abstraction & object technology
 Design by Contract
 Genericity, multiple inheritance
 Architectural techniques
 Much higher level than 20, 15, 10 years ago

 Switch from operational techniques to logical deduction (e.g.
invariants) allows static reasoning

Chair of Software Engineering

The new world

 Everything has to be concurrent, distributed, multithreaded,
pervasive, wearable, web-enabled...

 Used to be messy

 Still messy

 Examples: threading models in most popular
approaches

 Development level: ca. 1968

 Only understandable through operational reasoning

Chair of Software Engineering

Concurrency & distribution

 Everyone wants to do it

 Many are doing it

 Those who are doing it are not doing it very well

Chair of Software Engineering

Web services

 Generalization of client-server paradigm taking
advantage of the ubiquity of the World-Wide Web

 Technologies: HTTP, XML, SOAP, WSDL

Definition

A Web Service is a service made available by a
program to other programs through the World-
Wide Web

Chair of Software Engineering

Web service technologies

 HTTP (HyperText Transfer Protocol): the Web
server protocol

 WSDL (Web Services Description Language):
provide description of services offered

 UDDI: help search for services

 SOAP (Simple Object Access Protocol): encode
service requests and results

 XML (eXceedingly Marketed Language): common
format for all exchanges

Chair of Software Engineering

Some Web service issues

 Programming Web services

 Specifying the effect of a Web service

 Guaranteeing quality

Chair of Software Engineering

The documentation problem

 How to guarantee that documentation is faithful to
the software?

 How to guarantee that it remains faithful?

 How to get it in the first place?

Chair of Software Engineering

The French Driver’s License issue

Chair of Software Engineering

The trouble with IDL

 Has to be written and maintained separately

 Better approach: Eiffel’s contract form; .NET
metadata

 Will WSDL reintroduce the problem?

Chair of Software Engineering

The new world

 Everything has to be concurrent, distributed, multithreaded,
pervasive, wearable, web-enabled...

 Used to be messy

 Still messy

 Examples: threading models in most popular
approaches

 Development level: ca. 1968

 Only understandable through operational reasoning

Chair of Software Engineering

Impedance mismatch

 O-O: high-level abstraction mechanisms

 Concurrency: semaphores, locks, suspend, manual
exclusion, sharing…

Chair of Software Engineering

SCOOP

 Simple Concurrent Object-Oriented Programming

 First iteration 1990

 CACM, 1993

 Object-Oriented Software Construction, 2nd edition, 1997

 Prototype implementation at Eiffel Software, 1995

 Prototypes by others

 No being done for good at ETH, Hasler foundation funding,
also ETH and Microsoft ROTOR project

Chair of Software Engineering

Why O-O?

 Structuring concept:
the class
 Module-type fusion
 Information hiding
 Multiple inheritance
 Genericity
 Polymorphism and

dynamic binding
 Contracts

x.r (a)

Computation concept:
the object

 Modeling power

Dynamic allocation

Automatic memory
management

Chair of Software Engineering

O-O and concurrency

 “Objects are naturally concurrent” (Milner)

 Many attempts

 “Active objects”

 “Inheritance anomaly”

 No mechanism widely accepted
 In practice, low-level mechanisms on top of O-O

language

Chair of Software Engineering

Feature call

x: CX

x.r (a)

r (a: A) is
require

a /= Void
 ensure

not a. is_empty
end

Client Supplier (CX)

previous_instruction

x.r (a)

next_instruction

Processor

Chair of Software Engineering

Object-oriented computation

To perform a computation is
 to apply certain actions
 to certain objects
 using certain processors

Processor

Actions Objects

x.r (a)

Chair of Software Engineering

What makes an application concurrent?

Processor:
Thread of control supporting sequential execution
of instructions on one or more objects

Can be implemented as:
 Computer CPU
 Process
 Thread
 AppDomain (.NET) …

Will be mapped to computational resources

Processor

Actions Objects

Chair of Software Engineering

Handling rule

All calls on an object
are executed by the processor’s handler

Chair of Software Engineering

Reasoning about objects

{Prer and INV} bodyr {Postr and INV }

{Prer’} x.r (a) {Postr’}

Chair of Software Engineering

Reasoning about objects

Only n proofs if n exported routines!

{Prer and INV} bodyr {Postr and INV }

{Prer’} x.r (a) {Postr’}

Chair of Software Engineering

In a concurrent context

Only n proofs if n exported routines?

{Prer and INV} bodyr {Postr and INV }

{Prer’} x.r (a) {Postr’}

Client 1, r1 Client 2, r2 Client 3, r3

Chair of Software Engineering

Mutual exclusion rule

At most one feature may execute
on any one object at any one time

Chair of Software Engineering

Feature call: sequential

x: CX

x.r (a)

Processor

r (a: A) is
require

a /= Void
 ensure

not a. is_empty
end

Client Supplier (CX)

previous_instruction

x.r (a)

next_instruction

Chair of Software Engineering

Feature call: asynchronous

x: separate CX

x.r (a)

Client Supplier (CX)

Client processor Supplier processor

previous_instruction

x.r (a)

next_instruction

r (a: A) is
require

a /= Void
 ensure

not a. is_empty
end

Chair of Software Engineering

Separateness rule

Calls to non-separate objects are synchronous

Call to separate objects are asynchronous

Chair of Software Engineering

Feature call: asynchronous

x: separate CX

x.r (a)

Client Supplier (CX)

Client processor Supplier processor

previous_instruction

x.r (a)

next_instruction

r (a: A) is
require

a /= Void
 ensure

not a. is_empty
end

Chair of Software Engineering

Feature call: asynchronous

x: separate CX

x.r (a)

Client

Client processor Supplier processor

previous_instruction

x.r (a)

next_instruction

 r (a: A) is
require

a /= Void
ensure

not
a.is_empty
end

Chair of Software Engineering

What does “separate” mean?

 Does not specify processor

 Simply indicates that it’s “elsewhere”

Chair of Software Engineering

The fundamental difference

To wait or not to wait:
 If same processor, synchronous
 If different processor, asynchronous

Difference must be captured by syntax:

 x: CX

 x: separate CX

Chair of Software Engineering

Consistency

Supplier:

class B feature

p (a: separate SOME_TYPE)

is do ... end

end

Client:

class C feature

a: SOME_TYPE

sep: separate B

sep.p (a)
end

Chair of Software Engineering

Consistency

Supplier:

class B feature

p (a: separate SOME_TYPE)

is do ... end

end

Client:

class C feature

a: SOME_TYPE

sep: separate B

sep.p (a)
end

Chair of Software Engineering

Separateness consistency rule

For any reference actual argument in a
separate call, the corresponding formal
argument must be declared as separate

Separate call: a.f (...) where a is separate

Chair of Software Engineering

If no access control

x: separate CX

…

x.r (a)

 y := x.f

Chair of Software Engineering

If no access control

my_stack: separate STACK [T]

…

my_stack.push (a)

 y := my_stack.top

Chair of Software Engineering

Access control policy

 Require target of separate call to be formal
argument of enclosing routine:

put (b: separate STACK [T]; value: T) is
 -- Push value on top of b.

 do
b.push (value)

 end

Chair of Software Engineering

Access control policy

 Target of a separate call must be formal
argument of enclosing routine:

put (b: separate BUFFER [T]; value: T) is
 -- Store value into b.

 do
b.put (value)

 end

 To use separate object:
my_buffer: separate BUFFER [INTEGER]
create my_buffer
store (my_buffer, 10)

Chair of Software Engineering

Separate argument rule

The target of a separate call
must be an argument of the enclosing routine

Separate call: a.f (...) where a is separate

Chair of Software Engineering

Wait rule

A routine call with separate arguments
will execute when all corresponding objects

are available

and hold them exclusively
for the duration of the routine

Separate call: a.f (...) where a is separate

Chair of Software Engineering

 Postcondition:
supplier obligation

Contracts in Eiffel

store (buf: BUFFER [INTEGER]; value: INTEGER) is
-- Store value into buffer.

 require
not buf.is_full
value > 0

 do
buf.put (value)

 ensure
not buf.is_empty

 end
...

 Precondition:
client obligation

Chair of Software Engineering

Contracts in Eiffel

store (buffer: BUFFER [INTEGER]; value: INTEGER) is
-- Store value into buffer.

 require
not buffer.is_full
value > 0

 do
buffer.put (value)

 ensure
not buffer.is_empty

 end
...
store (my_buffer, 10)

 If b is separate, precondition becomes wait
condition (instead of correctness condition)

 Precondition

Chair of Software Engineering

From preconditions to wait-conditions

store (buffer: separate BUFFER [INTEGER]; value: INTEGER)
 is

-- Store value into buffer.
 require

not buffer.is_full
value > 0

 do
buffer.put (value)

 ensure
not buffer.is_empty

 end
...
store (my_buffer, 10)

 If buffer is separate,.

 On separate
target,
precondition
becomes wait
condition

Chair of Software Engineering

Contracts

Supplier:

store (b: BUFFER [T]; value: T) is
-- Store value into b.

 require
not b.is_full
value > 0

 do
b.put (value)

 ensure
not b.is_empty

 end
...

Client:

if not my_buffer.is_full

then

store (my_buffer, x)

end

Chair of Software Engineering

Contract under concurrency?

Supplier:

store (b: BUFFER [T]; value: T) is
-- Store value into b.

 require
not b.is_full
value > 0

 do
b.put (value)

 ensure
not b.is_empty

 end
...

Client:

if not my_buffer.is_full

 ????
then

store (my_buffer, x)

end

Chair of Software Engineering

What happens to preconditions?

 Precondition on separate target becomes
wait condition (instead of correctness
condition)

 This becomes the basic synchronization
mechanism

Chair of Software Engineering

Separate precondition rule

A separate precondition
causes the client to wait

Separate precondition: a.condition (...)

where a is separate

Chair of Software Engineering

Full synchronization rule

A call with a separate argument waits until:
 Object is available
 Separate precondition holds

x.f (a)

where a is separate

Chair of Software Engineering

Resynchronization

 No special mechanism needed for client to
resynchronize with supplier after separate call.

 The client will wait only when it needs to:
x.f
x.g (a)
y.f
…
value := x.some_query

Wait here!

Chair of Software Engineering

Resynchronization rule

Clients wait for resynchronization on queries

Chair of Software Engineering

Interrupts?

Can we snatch shared object from its current holder?

 Execute holder.r (b) where b is separate

 Another object executes challenger.s (b)

 Normally, challenger would wait

 What if challenger is impatient?

Chair of Software Engineering

The duel mechanism

Library features

Exception in holder;
serve challenger

Challenger
waits

yield

Exception in challengerChallenger
waits

retain

immediate_servicenormal_serviceChallenger

 Holder

Chair of Software Engineering

Extending duels

 Timing limits

 Priorities (for real-time processing)

Chair of Software Engineering

Example: class PROCESS

deferred class

PROCESS

feature -- Status report

over: BOOLEAN is

 -- Must execution terminate now?

 deferred end

feature -- Basic operations

setup is

 -- Prepare to execute process (default: nothing).

 do end

step is

 -- Execute basic process operations.

 deferred end

Chair of Software Engineering

PROCESS

wrapup is
 -- Execute termination operations (default: nothing).

 do end

feature -- Process behavior

live is
 -- Perform process lifecycle.

 do
 from setup until over loop
 step
 end
 wrapup

 end
end

Chair of Software Engineering

Example: Dining philosophers

class PHILOSOPHER inherit
PROCESS

rename
setup as getup

redefine step end

feature {BUTLER}
step is
 do
 think ; eat (left, right)

 end

eat (l, r: separate FORK) is
 -- Eat, having grabbed l and r.

 do … end
end

Chair of Software Engineering

Example: Bounded buffer usage

Usage of bounded buffers

buff: BUFFER_ACCESS [MESSAGE]
my_buffer: BOUNDED_BUFFER [MESSAGE]

create my_buffer
create buff.make (my_buffer)

buff.put (my_buffer, my_message)
…
buff.put (my_buffer, her_message)
…
my_query := buff.item (my_buffer)

Chair of Software Engineering

Other examples

 Watchdog: use duels

 Elevator (see next)

 Others in Object-Oriented Software Construction

Chair of Software Engineering

Duels

Problem: Impatient client (challenger) wants to
snatch object from another client (holder)

 Can’t just interrupt holder, service challenger,
and resume holder: would produce inconsistent
object.

 But: can cause exception, which will be handled
safely.

Chair of Software Engineering

Exception in holder;
serve challenger

Challenger waitsyield

Exception in challengerChallenger waitsretain

immediate_servicenormal_serviceChallenger

 Holder

Duels

Chair of Software Engineering

Two-level architecture of SCOOP

 Adaptable to many environments
 .NET remoting is current platform

SCOOP
platform-independent

.NET
Remoting

.NET
Compact

Framework
POSIX

Threads
…

Chair of Software Engineering

Mapping processors to physical resources

Concurrency Control File (CCF)

create
 system

 "lincoln" (4): "c:\prog\appl1\appl1.exe"
 "roosevelt" (2): "c:\prog\appl2\appl2.dll"

 "Current" (5): "c:\prog\appl3\appl3.dll"
 end
external
 Database_handler: "jefferson" port 9000
 ATM_handler: "gates" port 8001
end
default
 port: 8001; instance: 10
end

Chair of Software Engineering

SCOOPLI: Library for SCOOP

 Library-based solution

 Implemented in Eiffel for .NET
(from Eiffel Software:
EiffelStudio / ENViSioN! for Visual Studio.NET)

 Aim: try out solutions without bothering with
compiler issues

 Can serve as a basis for compiler implementations

Chair of Software Engineering

 separate client
 separate supplier

Each separate client & separate supplier handled by
different processor

Class gets separateness through multiple inheritance:

 SEPARATE_
 SUPPLIER X

SEPARATE_X

SCOOPLI concepts

Chair of Software Engineering

SCOOPLI emulation of SCOOP concepts

separate_execute ([x, y], agent r (x, y),
 agent r_precondition)

r_precondition: BOOLEAN is
 do
 Result := not x.is_empty and y.count > 5
 end

 -- client class inherits from
 -- class SEPARATE_CLIENT

r (x, y)
 -- x and y are separate

r (x: separate X; y: separate Y)

 is
 require
 not x.is_empty
 y.count > 5
 i > 0 -- i non-separate

 x /= Void
 do
 ...
 end

x: SEPARATE_X
 -- SEPARATE_X inherits from X and
 -- SEPARATE_SUPPLIER

x: separate X
x: X -- class X is separate

SCOOPLISCOOP

Chair of Software Engineering

SCOOPLI Architecture

 SEPARATE_HANDLER: locking; checking wait
conditions; scheduling of requests

 PROCESSOR_HANDLERs: execute separate calls;
implement processors

Inheritance

Client

Chair of Software Engineering

Distributed execution

 Processors (AppDomains) located on different
machines

 .NET takes care of the "dirty work"
 Marshalling
 Minimal cost of inter-AppDomain calls

Computer1

AppDomain1

o1

o2

Computer2

AppDomain2

o3

o9

Computer3

AppDomain3

o4

o5

AppDomain4

o6

o7

o8

o9.f

o1.g

o6.f (o3)

 o8.g

o4.f

Chair of Software Engineering

SCOOP multithreaded elevators

Chair of Software Engineering

Elevator example architecture

For maximal concurrency, all objects are separate

Inheritance

Client

Chair of Software Engineering

Class BUTTON

separate class

BUTTON

feature

target: INTEGER

end

Chair of Software Engineering

Class CABIN_BUTTON

separate class CABIN_BUTTON inherit
BUTTON

feature
cabin: ELEVATOR

request is
-- Send to associated elevator a request to stop on level target.

 do
actual_request (cabin)

 end

actual_request (e: ELEVATOR) is
-- Get hold of e and send a request to stop on level target.

 do
e.accept (target)

 end
end

Chair of Software Engineering

Class ELEVATOR

separate class ELEVATOR feature {BUTTON, DISPATCHER}

accept (floor: INTEGER) is
-- Record and process a request to go to floor.

 do
record (floor)
if not moving then process_request end

 end

feature {MOTOR}

record_stop (floor: INTEGER) is
-- Record information that elevator has stopped on

floor.
 do

moving := False ; position := floor ; process_request
 end

Chair of Software Engineering

Class ELEVATOR
feature {NONE} -- Implementation

process_request is
-- Handle next pending request, if any.

 local floor: INTEGER do
if not pending.is_empty then
 floor := pending.item ; actual_process (puller, floor)
 pending.remove
end

 end

actual_process (m: MOTOR; floor: INTEGER) is
-- Handle next pending request, if any.

 do
moving := true ; m.move (floor)

 end

feature {NONE} -- Implementation
puller: MOTOR ; pending: QUEUE [INTEGER]

end

Chair of Software Engineering

Class MOTOR

separate class MOTOR feature {ELEVATOR}

move (floor: INTEGER) is

-- Go to floor; once there, report.

 do

gui_main_window.move_elevator (cabin_number, floor)

signal_stopped (cabin)

 end

signal_stopped (e: ELEVATOR) is

-- Report that elevator e stopped on level position.

 do e.record_stop (position) end

feature {NONE}

cabin: ELEVATOR ; position: INTEGER -- Current floor level.

gui_main_window: GUI_MAIN_WINDOW

end

Chair of Software Engineering

Why SCOOP?

 SCOOP model
 Simple yet powerful

 Easier and safer than common concurrent techniques,
e.g. Java Threads

 Full concurrency support

 Full use O-O and Design by Contract

 Supports various platforms and concurrency
architectures

 One new keyword: separate

 SCOOPLI library
 SCOOP-based syntax
 Implemented on .NET
 Distributed execution with .NET Remoting

Chair of Software Engineering

Future work & open problems

 Other “handles”
 Direct support for distribution
 Prevent deadlock, extend access control policy
 Extend for real-time

 Duel mechanism with priorities
 Timing assertions?

 Integrate with Eiffel Software compiler

Chair of Software Engineering

Application to Web services

 Every Web service should be described by a
contract

 SCOOP seems to provide the right conceptual
framework

 Implementation is in progress

Chair of Software Engineering

Why SCOOP?

 Extend object technology with general and powerful
concurrency support

 Provide the industry with simple techniques for
parallel, distributed, internet, real-time programming

 Make programmers sleep better!

