Contracts, concurrency
and SCOOQOP
for Web Services

Bertrand Meyer

Professor of software engineering, ETH Zurich
Founder and chief architect, Eiffel Software

Trento, December 2003

Chair of Software Engineering Pttt bl A

(¢) The traditional programming world

= Sequential
* Used to be messy

= Still hard but:
* Structured programming
* Well-understood basic structures
= Data abstraction & object technology
= Design by Contract
= Genericity, multiple inheritance
* Architectural techniques
* Much higher level than 20, 15, 10 years ago

= Switch from operational techniques to logical deduction (e.g.
invariants) allows static reasoning

Chair of Software Engineering gl

(©) Design by Contract™

* Get things right in the first
place

= Automatic documentation

= Self-debugging, self-testing code

* Proper handling of abnormal cases (exceptions,
failures)

* Get inheritance right

* Give managers the right control tools

Chair of Software Engineering Pl il b bt S

(¢) Contracts in Eiffel

store (buf: BUFFER [INTEGER]; value: INTEGER) is
-- Store value into buffer.

require Precondition:
not buf.is_full client obligation
value > 0

do
Postcondition:
buf.put (value) @er obligatiog
ensure

not buf.is_empty
end

Chair of Software Engineering Pttt bl A

(¢) The traditional programming world

= Sequential
* Used to be messy

= Still hard but:
* Structured programming
* Well-understood basic structures
= Data abstraction & object technology
= Design by Contract
= Genericity, multiple inheritance
* Architectural techniques
* Much higher level than 20, 15, 10 years ago

= Switch from operational techniques to logical deduction (e.g.
invariants) allows static reasoning

Chair of Software Engineering gl

(*) The new world

= Everything has to be concurrent, distributed, multithreaded,
pervasive, wearable, web-enabled...

* Used to be messy
= Still messy

= Examples: threading models in most popular
approaches

* Development level: ca. 1968

* Only understandable through operational reasoning

Chair of Software Engineering

(¢) Concurrency & distribution

* Everyone wants to do it
* Many are doing it

* Those who are doing it are not doing it very well

Chair of Software Engineering Pl il b bt S

(*) Web services

= Generalization of client-server paradigm taking

advantage of the ubiquity of the World-Wide Web

Wide Web

Definition

A Web Service is a service made available by a
program to other programs through the World-

* Technologies: HTTP, XML, SOAP, WSDL

Chair of Software Engineering

(*) Web service technologies

= HTTP (HyperText Transfer Protocol): the Web
server protocol

= WSDL (Web Services Description Language):
provide description of services offered

= UDDI: help search for services

= SOAP (Simple Object Access Protocol): encode
service requests and results

= XML (eXceedingly Marketed Language): common
format for all exchanges

Chair of Software Engineering Pirsruid pH e b

(¢) Some Web service issues

* Programming Web services
= Specifying the effect of a Web service

* Guaranteeing quality

Chair of Software Engineering

(¢) The documentation problem

* How to guarantee that documentation is faithful to
the software?

* How to guarantee that it remains faithful?

* How to get it in the first place?

Chair of Software Engineering Pirsruid pH e b

G) The French Driver’s License

Issue

Chair of Software Engineering

(¢) The trouble with IDL

* Has to be written and maintained separately

* Better approach: Eiffel’s contract form; .NET
metadata

= Will WSDL reintroduce the problem?

Chair of Software Engineering

(*) The new world

= Everything has to be concurrent, distributed, multithreaded,
pervasive, wearable, web-enabled...

* Used to be messy
= Still messy

= Examples: threading models in most popular
approaches

* Development level: ca. 1968

* Only understandable through operational reasoning

Chair of Software Engineering

(¢) Impedance mismatch

* 0-0: high-level abstraction mechanisms

= Concurrency: semaphores, locks, suspend, manual
exclusion, sharing...

Chair of Software Engineering Pirsruid pH e b

(¢) scoor

= Simple Concurrent Object-Oriented Programming

= First iteration 1990

= CACM, 1993

* Object-Oriented Software Construction, 2" edition, 1997
* Prototype implementation at Eiffel Software, 1995

* Prototypes by others

= No being done for good at ETH, Hasler foundation funding,
also ETH and Microsoft ROTOR project

Chair of Software Engineering Pl il b bt S

(*) Why 0-0?

= Structuring concept:
the class

Module-type fusion
Information hiding

Multiple inheritance
Genericity

Polymorphism and
dynamic binding

Contracts

Chair of Software Engineering

Computation concept:
the object

= Modeling power
*Dynamic allocation

*Automatic memory
management

| x.r(a).

(¢) 0-0 and concurrency

= “"Objects are naturally concurrent” (Milner)
* Many attempts

= “Active objects”

* “Inheritance anomaly”

* No mechanism widely accepted

= In practice, low-level mechanisms on top of O-0O
language

Chair of Software Engineering Pl il b bt S

(*) Feature call

X: CX

Client

x.r(a)-

previous_instruction

X-r (a)

next_instruction

Chair of Software Engineering

Supplier (CX)
r@A)is
require
a/=Void
ol ensure
not a Is_empty
end
Processor

(*) Object-oriented computation

To perform a computation is
* to apply certain actions
* to certain objects
" using certain processors

Chair of Software Engineering

Actions

| x.r(a)-

I

Objects

I

Processor

G) What makes an application concurrent?

Processor:
Thread of control supporting sequential execution
of instructions on one or more objects

Can be implemented as:

= Computer CPU Actions > Objects
" Process I I
" Thread Processor

= AppDomain (.NET) ...

Will be mapped to computational resources

Chair of Software Engineering Pl il b bt S

(*) Handling rule

All calls on an object

are executed by the processor’s handler

Chair of Software Engineering

(*) Reasoning about objects

{Pre, and INV} body. <{Post . and INV }

{Pre.'} x.r (@) {Post '}

Chair of Software Engineering Ff

(*) Reasoning about objects

Only n proofs if n exported routines!

{Pre, and INV} body. <{Post and INV }

{Pre.'} x.r (a) {Post '}

Chair of Software Engineering Ff

(*) In a concurrent context

Only n proofs if n exported routines?

{Pre, and INV} body. <{Post and INV }

{Pre.'} x.r (a) {Post '}

>

Client 1, r1 Client 2, r2 Client 3, r3

Chair of Software Engineering Pttt bl A

(¢) Mutual exclusion rule

At most one feature may execute
on any one object at any one time

Chair of Software Engineering

(¢) Feature call: sequential

Client

- X.r(a)

\ 7

previous_instruction

X-r (a)

next_instruction

Chair of Software Engineering

Supplier (CX)
r@A)is
require
a/=Void
ol ensure
not a is_empty
end
Processor

(¢) Feature call: asynchronous

- X.r(a)
X:. separate CX
Client Supplier (CX)
previous_instruction raA)is
require
xr(a) q a/=Void
ensure
next_instruction not a is_empty
end

Client processor Supplier processor

Chair of Software Engineering

(¢) Separateness rule

Calls to non-separate objects are synchronous

Call to separate objects are asynchronous

Chair of Software Engineering Pirsruid pH e b

(¢) Feature call: asynchronous

- X.r(a)
X:. separate CX
Client Supplier (CX)
previous_instruction raA)is
require
xr(a) q a/=Void
ensure
next_instruction not a is_empty
end

Client processor Supplier processor

Chair of Software Engineering

(¢) Feature call: asynchronous

- X.r(a)
X:. separate CX
Client r(a: A) is
previous_instruction require
a /= Void
X.r (a) > ensure
not
: : a.is_empty
next _Instruction —
— ___end
Client processor Supplier processor

Chair of Software Engineering Pirsruid pH e b

(*) What does “separate” mean?

= Does not specify processor

A\

* Simply indicates that it's “elsewhere”

Chair of Software Engineering

(¢) The fundamental difference

To wait or not to wait:
= Jf same processor, synchronous
= If different processor, asynchronous

Difference must be captured by syntax:
= X: CX

" X: separate CX

Chair of Software Engineering

(¢) Consistency

Client:

class C feature
a: SOME TYPE

sep: separate B

sep.p (a)

end

Chair of Software Engineering

Supplier:

class B feature
p (a: SOME_TYPE)
is do ... end

end

(¢) Consistency

Client:

class C feature
a: SOME TYPE

sep: separate B

sep.p (a)

end

Chair of Software Engineering

Supplier:

class B feature
p (a: separate SOME_TYPE)
is do ... end

end

(¢) Separateness consistency rule

For any reference actual argument in a
separate call, the corresponding formal
argument must be declared as separate

Separate call: a.f (...) where a is separate

Chair of Software Engineering Pirsruid pH e b

(+) If no access control

X: separate CX

X.r (a)

Chair of Software Engineering

(+) If no access control

my_stack: separate STACK [T]

my_stack.push (a)

y := my_stack.top

Chair of Software Engineering

(*) Access control policy

= Require target of separate call to be formal
argument of enclosing routine:

put (b: separate STACK [T]; value: T) is
-- Push value on top of b.
do
b.push (value)
end

Chair of Software Engineering Pirsruid pH e b

(*) Access control policy

" Target of a separate call must be formal
argument of enclosing routine:
put (b: separate BUFFER [T]; value: T) is
-- Store value into b.
do
b.put (value)
end

" To use separate object:

my_buffer: separate BUFFER [INTEGER]
create my_buffer
store (my_buffer, 10)

Chair of Software Engineering st

(¢) Separate argument rule

The target of a separate call
must be an argument of the enclosing routine

Separate call: a.f (...) where a is separate

Chair of Software Engineering Pirsruid pH e b

@ Wait rule

A routine call with separate arguments

will execute when all corresponding objects
are available

and hold them exclusively
for the duration of the routine

Separate call: a.f (...) where a is separate

Chair of Software Engineering Pirsruid pH e b

(¢) Contracts in Eiffel

store (buf: BUFFER [INTEGER]; value: INTEGER) is
-- Store value into buffer.

require Precondition:
not buf.is_full client obligation
value > 0

do
Postcondition:
buf.put (value) @er obligatiog
ensure

not buf.is_empty
end

Chair of Software Engineering Pttt bl A

(¢) Contracts in Eiffel

store (buffer: BUFFER [INTEGER]; value: INTEGER) is
-- Store value into buffer.
require

not buffer.is full i
value > 0 Precondition j
do

buffer.put (value)
ensure

not buffer.is_empty
end

store (my_buffer, 10)

Chair of Software Engineering Pl il b bt S

@ From preconditions to wait-conditions

store (buffer: separate BUFFER [INTEGER]; value: INTEGER)

is
-- Store value into buffer.

require - On separate O
not buffer.is_full target,
value > 0 recondition

do ecomes wait
buffer.put (value) condition

ensure % 7
not buffer.is_empty

end

store (my_buffer, 10)

= If buffer is separate,.

Chair of Software Engineering Pttt bl A

(¢) Contracts

Supplier:
Client:
store (b: BUFFER [T]; value: T) is
if not my_buffer.is_full - Store value into b.
require
not b.is_full
then N value > 0
do
store (my_buffer, x) b.put (value)
ensure
end not b.is_empty
end

Chair of Software Engineering

(¢) Contract under concurrency?

Client:

if not my_buffer.is_full
22722

then

Supplier:

store (b: BUFFER [T]; value: T) is
-- Store value into b.

require
not b.is full
N value > 0

store (my_buffer, x)

end

Chair of Software Engineering

do

b.put (value)
ensure

not b.is_empty
end

(¢) What happens to preconditions?

* Precondition on separate target becomes
wait condition (instead of correctness

condition)

* This becomes the basic synchronization
mechanism

Chair of Software Engineering

(+) Separate precondition rule

A separate precondition
causes the client to wait

Separate precondition: a.condition (...)
where a is separate

Chair of Software Engineering Pirsruid pH e b

(*) Full synchronization rule

A call with a separate argument waits until:
" Object is available
= Separate precondition holds

x.f (a)
where a is separate

Chair of Software Engineering Pirsruid pH e b

(¢) Resynchronization

* No special mechanism needed for client to
resynchronize with supplier after separate call.

* The client will wait only when it needs to:

value .= x.some_query

e
Wait here!

ETH
Chair of Software Engineering i

(¢) Resynchronization rule

Clients wait for resynchronization on queries

Chair of Software Engineering Pttt bl A

(*) Interrupts?

Can we snatch shared object from its current holder?
= Execute holder.r (b) where b is separate

* Another object executes challenger.s (b)

* Normally, challenger would wait

= What if challenger is impatient?

Chair of Software Engineering Pirsruid pH e b

(*) The duel mechanism

Library features

Challenger normal_service |immediate_service
Holder
retain Challenger Exception in challenger
waits
yield Challenger Exception in holder;
waits serve challenger

Chair of Software Engineering

(¢) Extending duels

* Timing limits

" Priorities (for real-time processing)

Chair of Software Engineering

(¢) Example: class PROCESS

deferred class
PROCESS
feature -- Status report
over: BOOLEAN is
-- Must execution terminate now?
deferred end
feature -- Basic operations
setup is
-- Prepare to execute process (default: nothing).
do end
step is
-- Execute basic process operations.
deferred end

Chair of Software Engineering

(¢) PROCESS

wrapup is
-- Execute termination operations (default: nothing).
do end

feature -- Process behavior

live is

-- Perform process lifecycle.

do
from setup until over loop

step

end
wrapup

end

end

Chair of Software Engineering

(¢) Example: Dining philosophers

class PHILOSOPHER inherit
PROCESS
rename
setup as getup
redefine step end

feature {BUTLER}
step is
do

think ; eat (left, right)
end

eat (I, r: separate FORK) is
-- Eat, having grabbed / and r.
do ... end
end

Chair of Software Engineering Pl il b bt S

(¢) Example: Bounded buffer usage

Usage of bounded buffers

buff: BUFFER_ACCESS [MESSAGE]
my_buffer: BOUNDED_BUFFER [MESSAGE]

create my_buffer
create buff.make (my_buffer)

buff.put (my_buffer, my_message)
Buff.put (my_buffer, her_message)

my_query = buff.item (my_buffer)

Chair of Software Engineering

(¢) Other examples

* Watchdog: use duels

* Elevator (see next)

= Others in Object-Oriented Software Construction

Chair of Software Engineering Pl il b bt S

(*) Duels

Problem: Impatient client (challenger) wants to
snatch object from another client (holder)

* Can't just interrupt holder, service challenger,
and resume holder: would produce inconsistent
object.

= But: can cause exception, which will be handled
safely.

Chair of Software Engineering Pirsruid pH e b

(*) Duels

Challenger

normal_service

immediate _service

serve challenger

Holder
retain Challenger waits | Exception in challenger
yield Challenger waits Exception in holder;

Chair of Software Engineering

(¢) Two-level architecture of SCOOP

= Adaptable to many environments
* NET remoting is current platform

SCOOP
platform-independent

NET
NET Compact POSIX

Remoting Framework Threads

Chair of Software Engineering

@ Mapping processors to physical resources

Concurrency Control File (CCF)

Ccreate
system
"lincoln” (4): "c:\prog\appll\appll.exe"
"roosevelt" (2): "c:\prog\appl2\appl2.dll”
"Current"” (5): "c:\prog\appl3\appl3.dll”
end
external
Database_handler: "jefferson” port 9000
ATM _ handler: "gates” port 8001
end
default
port: 8001; instance: 10
end

Chair of Software Engineering Pttt bl A

(¢) SCOOPLI: Library for SCOOP

* Library-based solution
* Implemented in Eiffel for .NET
(from Eiffel Software:

EiffelStudio / ENVIiSioN! for Visual Studio.NET)

= Aim: try out solutions without bothering with
compiler issues

= Can serve as a basis for compiler implementations

Chair of Software Engineering Pirsruid pH e b

(¢) SCOOPLI concepts

» separate client
* separate supplier

Each separate client & separate supplier handled by
different processor

Class gets separateness through multiple inheritance:

SEPARATE_
SUPPLIER
SEPARATE_X

Chair of Software Engineering Pirsruid pH e b

@ SCOOPLI emulation of SCOOP concepts

SCOOP

SCOOPLI

X: separate X
Xx: X -- class X is separate

X: SEPARATE X
-- SEPARATE X inherits from X and
-- SEPARATE _SUPPLIER

r(x,y)
-- X and y are separate

r (x: separate X; y: separate Y)

is

require
not x.is_empty
y.count > 5
i >0 --inon-separate

x /= Void

Chair od“’tware Engineering

separate_execute ([x, y], agent r (x, y),
agent r_precondition)

r_precondition: BOOLEAN is
do
Result := not x.is_empty and y.count > 5
end

-- client class inherits from
-- class SEPARATE_CLIENT

(¢) SCOOPLI Architecture

Flienf

L=
.SL T TIH{E&D A
Inheritance
PRG!‘:E\.& ?ﬂR T FANE e -_i“Efl' _I_RJ_TE e SagrE Ferarerfivar P — q_“"-.,,
I:' H-i 'TD.E.E'R iy H E-‘-l "n-D.n'.’.EE H “'é'ER‘lM TE_TEE_E"" -
+SEPARA TE/—_\
L NLEEIIEN - T It
-;.ﬁ-'h_ - “ SEPARATE_CLIENT .
LD L4 o T A&
FoufnG_roguasts: et ':?:e.;rme_zre::‘_:l.?_l;ffr_-.': mrLE;.] A
._.?:_5-:'-" wogenizng i

< ROUTIVE_REQUEST >

= SEPARATE_HANDLER: locking; checking wait
conditions; scheduling of requests

* PROCESSOR_HANDLERs: execute separate calls;
implement processors

Chair of Software Engineering

(+) Distributed execution

* Processors (AppDomains) located on different

machines

= NET takes care of the "dirty work"
= Marshalling
= Minimal cost of inter-AppDomain calls

Computer1

o1

AppDomain1

ol.g

02

Computer2

09.f

03

AppDomain2

09

06.f (03)

Computer3

AppDomain3

04 |«

o4.f

05

AppDomain4

08.g

Y

06 o7

Chair of Software Engineering

>

08

(¢) SCOOP multithreaded elevators

inixd

=T Foir dabbivi o
: e e D =
Ltal = eumiy | j |h| : odeqiralabon j Il|

Chair of Software Engineering

(+) Elevator example architecture

J L i al

~ abm e ~-. wller T T
< TLOOR_ EUTTON CABIN_BUTTON - S0 FLEVATOR ¥ S WOTOR)

EE'E:I T

wlmveors, A4 5T
£ .wwr'q Y. H.i-.'.'
Client
A
Inheritance

For maximal concurrency, all objects are separate

Chair of Software Engineering Pirsruid pH e b

(¢) Class BUTTON

separate class
BUTTON
feature
target: INTEGER

end

Chair of Software Engineering

(¢) Class CABIN_BUTTON

separate class CABIN_BUTTON inherit
BUTTON

feature
cabin: ELEVATOR

reqguest is
-- Send to associated elevator a request to stop on level target.
do
actual_request (cabin)
end

actual_request (e: ELEVATOR) is
-- Get hold of e and send a request to stop on level target.
do
e.accept (target)
end
end

Chair of Software Engineering Pl il b bt S

(¢) Class ELEVATOR

separate class ELEVATOR feature {BUTTON, DISPATCHER}

accept (floor: INTEGER) is
-- Record and process a request to go to floor.
do
record (floor)
if not moving then process request end
end

feature {MOTOR}

record_stop (floor: INTEGER) is

-- Record information that elevator has stopped on
floor.

do
moving := False ; position := floor ; process request
end

ETH

Chair of Software Engineering Pttt bl A

(¢) Class ELEVATOR

feature {NONE} -- Implementation
process_request is
-- Handle next pending request, if any.
local floor: INTEGER do
if not pending.is_empty then
floor := pending.item ; actual_process (puller, floor)
pending.remove
end
end

actual_process (m: MOTOR; floor: INTEGER) is
-- Handle next pending request, if any.
do
moving := true ; m.move (floor)
end

feature {NONE} -- Implementation
puller: MOTOR ; pending: QUEUE [INTEGER]

Chai%ware Engineering

(*) Class MOTOR

separate class MOTOR feature {ELEVATOR}
move (floor: INTEGER) is
-- Go to floor; once there, report.
do
gui_main_window.move_elevator (cabin_number, floor)
signal_stopped (cabin)
end
signal_stopped (e: ELEVATOR) is
-- Report that elevator e stopped on level position.
do e.record _stop (position) end
feature {NONE}
cabin: ELEVATOR ; position: INTEGER -- Current floor level.
gui_main_window: GUI_MAIN_WINDOW
end

Chair of Software Engineering Pl il b bt S

(¢) Why SCOOP?

= SCOOP model

* Simple yet powerful

= Easier and safer than common concurrent techniques,
e.g. Java Threads

= Full concurrency support
* Full use O-0O and Design by Contract

= Supports various platforms and concurrency
architectures

* One new keyword: separate

= SCOOPLI library
* SCOOP-based syntax
* Implemented on .NET
= Distributed execution with .NET Remoting

Chair of Software Engineering Pl il b bt S

(+) Future work & open problems

= Other “handles”
= Direct support for distribution

* Prevent deadlock, extend access control policy
= Extend for real-time

* Duel mechanism with priorities

* Timing assertions?

= Integrate with Eiffel Software compiler

Chair of Software Engineering st

(¢) Application to Web services

* Every Web service should be described by a
contract

* SCOOP seems to provide the right conceptual
framework

* Implementation is in progress

Chair of Software Engineering st

(¢) Why SCOOP?

= Extend object technology with general and powerful
concurrency support

* Provide the industry with simple techniques for
parallel, distributed, internet, real-time programming

* Make programmers sleep better!

Chair of Software Engineering Pirsruid pH e b

