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The traditional programming world

 Sequential

 Used to be messy

 Still hard but:
 Structured programming
 Well-understood basic structures
 Data abstraction & object technology
 Design by Contract
 Genericity, multiple inheritance
 Architectural techniques
 Much higher level than 20, 15, 10 years ago

 Switch from operational techniques to logical deduction (e.g. 
invariants) allows static reasoning
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Design by Contract™

 Get things right in the first
place

 Automatic documentation

 Self-debugging, self-testing code

 Proper handling of abnormal cases (exceptions, 
failures)

 Get inheritance right

 Give managers the right control tools
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     Postcondition: 
supplier obligation

Contracts in Eiffel

store (buf: BUFFER [INTEGER]; value: INTEGER) is
-- Store value into buffer.

   require
not buf.is_full
value > 0

   do
buf.put (value)

       ensure
not buf.is_empty

   end
...

     Precondition: 
client obligation
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The traditional programming world

 Sequential

 Used to be messy

 Still hard but:
 Structured programming
 Well-understood basic structures
 Data abstraction & object technology
 Design by Contract
 Genericity, multiple inheritance
 Architectural techniques
 Much higher level than 20, 15, 10 years ago

 Switch from operational techniques to logical deduction (e.g. 
invariants) allows static reasoning
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The new world

 Everything has to be concurrent, distributed, multithreaded, 
pervasive, wearable, web-enabled...

 Used to be messy

 Still messy

 Examples: threading models in most popular 
approaches

 Development level: ca. 1968

 Only understandable through operational reasoning
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Concurrency & distribution

 Everyone wants to do it

 Many are doing it

 Those who are doing it are not doing it very well
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Web services

 Generalization of client-server paradigm taking 
advantage of the ubiquity of the World-Wide Web

 Technologies: HTTP, XML, SOAP, WSDL

Definition

A Web Service is a service made available by a 
program to other programs through the World-
Wide Web
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Web service technologies

 HTTP (HyperText Transfer Protocol): the Web 
server protocol

 WSDL (Web Services Description Language): 
provide description of services offered

 UDDI: help search for services

 SOAP (Simple Object Access Protocol): encode 
service requests and results

 XML (eXceedingly Marketed Language): common  
format for all exchanges
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Some Web service issues

 Programming Web services

 Specifying the effect of a Web service

 Guaranteeing quality
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The documentation problem

 How to guarantee that documentation is faithful to 
the software?

 How to guarantee that it remains faithful?

 How to get it in the first place?
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The French Driver’s License issue
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The trouble with IDL

 Has to be written and maintained separately

 Better approach: Eiffel’s contract form; .NET 
metadata

 Will WSDL reintroduce the problem?
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The new world

 Everything has to be concurrent, distributed, multithreaded, 
pervasive, wearable, web-enabled...

 Used to be messy

 Still messy

 Examples: threading models in most popular 
approaches

 Development level: ca. 1968

 Only understandable through operational reasoning
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Impedance mismatch

 O-O: high-level abstraction mechanisms

 Concurrency: semaphores, locks, suspend, manual 
exclusion, sharing…
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SCOOP

 Simple Concurrent Object-Oriented Programming

 First iteration 1990

 CACM, 1993

 Object-Oriented Software Construction, 2nd edition, 1997

 Prototype implementation at Eiffel Software, 1995

 Prototypes by others

 No being done for good at ETH, Hasler foundation funding, 
also ETH and Microsoft ROTOR project
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Why O-O?

 Structuring concept: 
the class
 Module-type fusion
 Information hiding
 Multiple inheritance
 Genericity
 Polymorphism and 

dynamic binding
 Contracts

x.r (a)

Computation concept:
the object

 Modeling power

Dynamic allocation

Automatic memory 
management
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O-O and concurrency

 “Objects are naturally concurrent” (Milner)

 Many attempts

 “Active objects”

 “Inheritance anomaly”

 No mechanism widely accepted
 In practice, low-level mechanisms on top of O-O 

language
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Feature call

x: CX

x.r (a)

r (a: A) is
require

a /= Void
   ensure

not a. is_empty
end

Client Supplier (CX)

previous_instruction

x.r (a)

next_instruction

Processor
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Object-oriented computation

To perform a computation is
 to apply certain actions
 to certain objects
 using certain processors

Processor

Actions Objects

x.r (a)
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What makes an application concurrent?

Processor:
Thread of control supporting sequential execution 
of instructions on one or more objects 

Can be implemented as:
 Computer CPU
 Process
 Thread
 AppDomain (.NET) …

Will be mapped to computational resources

Processor

Actions Objects
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Handling rule

All calls on an object
are executed by the processor’s handler
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Reasoning about objects

{Prer  and INV}   bodyr   {Postr and INV }

___________________________________

{Prer’} x.r (a)   {Postr’}
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Reasoning about objects

Only n proofs if n exported routines!

{Prer  and INV}   bodyr   {Postr and INV }

___________________________________

{Prer’} x.r (a)   {Postr’}
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In a concurrent context

Only n proofs if n exported routines?

{Prer  and INV}   bodyr   {Postr and INV }

___________________________________

{Prer’} x.r (a)   {Postr’}

Client 1, r1 Client 2, r2 Client 3, r3
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Mutual exclusion rule

At most one feature may execute
on any one object at any one time
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Feature call: sequential

x: CX

x.r (a)

Processor

r (a: A) is
require

a /= Void
   ensure

not a. is_empty
end

Client Supplier (CX)

previous_instruction

x.r (a)

next_instruction
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Feature call: asynchronous

x: separate CX

x.r (a)

Client Supplier (CX)

Client processor Supplier processor

previous_instruction

x.r (a)

next_instruction

r (a: A) is
require

a /= Void
   ensure

not a. is_empty
end
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Separateness rule

Calls to non-separate objects are synchronous

Call to separate objects are asynchronous
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Feature call: asynchronous

x: separate CX

x.r (a)

Client Supplier (CX)

Client processor Supplier processor

previous_instruction

x.r (a)

next_instruction

r (a: A) is
require

a /= Void
   ensure

not a. is_empty
end
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Feature call: asynchronous

x: separate CX

x.r (a)

Client

Client processor Supplier processor

previous_instruction

x.r (a)

next_instruction

 r (a: A) is
require

a /= Void
ensure

not 
a.is_empty
end
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What does “separate” mean?

 Does not specify processor

 Simply indicates that it’s “elsewhere”
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The fundamental difference

To wait or not to wait:
 If same processor, synchronous
 If different processor, asynchronous

Difference must be captured by syntax:

 x: CX

 x: separate CX
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Consistency

Supplier:

class B feature

p (a:  separate SOME_TYPE)

is do ... end

end

Client:

class C feature

a: SOME_TYPE

sep: separate B

sep.p (a)
end
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Consistency

Supplier:

class B feature

p (a:  separate SOME_TYPE)

is do ... end

end

Client:

class C feature

a: SOME_TYPE

sep: separate B

sep.p (a)
end
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Separateness consistency rule

For any reference actual argument in a 
separate call, the corresponding formal 
argument must be declared as separate

Separate call: a.f (...) where a is separate
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If no access control

x: separate CX

…

x.r (a)

 y := x.f
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If no access control

my_stack: separate STACK [T]

…

my_stack.push (a)

 y := my_stack.top
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Access control policy

 Require target of separate call to be formal 
argument of enclosing routine:

put (b: separate STACK [T]; value: T) is
           -- Push value on top of b.

        do
b.push (value)

        end
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Access control policy

 Target of a separate call must be formal 
argument of enclosing routine:

put (b: separate BUFFER [T]; value: T) is
           -- Store value into b.

        do
b.put (value)

        end

 To use separate object:
my_buffer: separate BUFFER [INTEGER]
create my_buffer
store (my_buffer, 10) 
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Separate argument rule

The target of a separate call
must be an argument of the enclosing routine

Separate call: a.f (...) where a is separate
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Wait rule

A routine call with separate arguments
will execute when all corresponding objects 

are available

and hold them exclusively
for the duration of the routine

Separate call: a.f (...) where a is separate
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     Postcondition: 
supplier obligation

Contracts in Eiffel

store (buf: BUFFER [INTEGER]; value: INTEGER) is
-- Store value into buffer.

   require
not buf.is_full
value > 0

   do
buf.put (value)

       ensure
not buf.is_empty

   end
...

     Precondition: 
client obligation
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Contracts in Eiffel

store (buffer: BUFFER [INTEGER]; value: INTEGER) is
-- Store value into buffer.

   require
not buffer.is_full
value > 0

   do
buffer.put (value)

       ensure
not buffer.is_empty

   end
...
store (my_buffer, 10)

 If b is separate, precondition becomes wait 
condition (instead of correctness condition)

     Precondition
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From preconditions to wait-conditions

store (buffer: separate BUFFER [INTEGER]; value: INTEGER)
   is

-- Store value into buffer.
   require

not buffer.is_full
value > 0

   do
buffer.put (value)

       ensure
not buffer.is_empty

       end
...
store (my_buffer, 10)

 If buffer is separate,.

     On separate 
target, 
precondition 
becomes wait 
condition
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Contracts

Supplier:

store (b: BUFFER [T]; value: T) is
-- Store value into b.

   require
not b.is_full
value > 0

   do
b.put (value)

   ensure
not b.is_empty

   end
...

Client:

if not my_buffer.is_full
 

then

store (my_buffer, x)

end
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Contract under concurrency?

Supplier:

store (b: BUFFER [T]; value: T) is
-- Store value into b.

   require
not b.is_full
value > 0

   do
b.put (value)

   ensure
not b.is_empty

   end
...

Client:

if not my_buffer.is_full

 ????
then

store (my_buffer, x)

end
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What happens to preconditions?

 Precondition on separate target becomes 
wait condition (instead of correctness 
condition)

 This becomes the  basic synchronization 
mechanism
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Separate precondition rule

A separate precondition
causes the client to wait

Separate precondition: a.condition (...)

where a is separate
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Full synchronization rule

A call with a separate argument waits until:
 Object is available
 Separate precondition holds

x.f (a)

where a is separate
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Resynchronization

 No special mechanism needed for client to 
resynchronize with supplier after separate call.

 The client will wait only when it needs to:
x.f
x.g (a)
y.f
…
value := x.some_query

Wait here!
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Resynchronization rule

Clients wait for resynchronization on queries
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Interrupts?

Can we snatch shared object from its current holder?

 Execute holder.r (b) where b is separate

 Another object executes challenger.s (b)

 Normally, challenger would wait

 What if challenger is impatient?
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The duel mechanism

Library features

Exception in holder; 
serve challenger

Challenger 
waits

yield

Exception in challengerChallenger 
waits

retain

immediate_servicenormal_serviceChallenger 

  Holder
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Extending duels

 Timing limits

 Priorities (for real-time processing)
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Example: class PROCESS

deferred class

PROCESS

feature -- Status report

over: BOOLEAN is

  -- Must execution terminate now?

      deferred   end

feature -- Basic operations

setup is

  -- Prepare to execute process (default: nothing).

       do   end

step is

  -- Execute basic process operations.

       deferred   end  
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PROCESS

wrapup is
 -- Execute termination operations (default: nothing).

       do   end

feature -- Process behavior

live is 
 -- Perform process lifecycle.

       do
  from setup until over loop
      step
  end
  wrapup

       end
end
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Example: Dining philosophers

class PHILOSOPHER inherit
PROCESS

rename
setup as getup

redefine step end

feature {BUTLER}
step is
     do
                think ;   eat (left, right)

              end

eat (l, r: separate FORK) is
               -- Eat, having grabbed l and r.

              do … end
end
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Example: Bounded buffer usage

Usage of bounded buffers 

buff: BUFFER_ACCESS [MESSAGE]
my_buffer: BOUNDED_BUFFER [MESSAGE]

create my_buffer
create buff.make (my_buffer)

buff.put (my_buffer, my_message)
…
buff.put (my_buffer, her_message)
…
my_query := buff.item (my_buffer)
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Other examples

 Watchdog: use duels

 Elevator (see next)

 Others in Object-Oriented Software Construction
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Duels

Problem: Impatient client (challenger) wants to 
snatch object from another client (holder) 

 Can’t just interrupt holder, service challenger, 
and resume holder: would produce inconsistent 
object.

 But: can cause exception, which will be handled 
safely.
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Exception in holder; 
serve challenger

Challenger waitsyield

Exception in challengerChallenger waitsretain

immediate_servicenormal_serviceChallenger 

  Holder

Duels
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Two-level architecture of SCOOP

 Adaptable to many environments
 .NET remoting is current platform

SCOOP
platform-independent

.NET 
Remoting

.NET
Compact

Framework
POSIX

Threads
…
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Mapping processors to physical resources

Concurrency Control File (CCF)

create
 system

     "lincoln"       (4): "c:\prog\appl1\appl1.exe"
   "roosevelt"   (2): "c:\prog\appl2\appl2.dll"

   "Current"     (5): "c:\prog\appl3\appl3.dll"
     end
external
    Database_handler: "jefferson" port 9000
    ATM_handler:     "gates"     port 8001
end
default
    port: 8001; instance: 10
end



Chair of Software Engineering

SCOOPLI: Library for SCOOP

 Library-based solution

 Implemented in Eiffel for .NET
(from Eiffel Software:
EiffelStudio / ENViSioN! for Visual Studio.NET)

 Aim: try out solutions without  bothering with 
compiler issues

 Can serve as a basis for compiler implementations
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 separate client
 separate supplier

Each separate client & separate supplier handled by 
different processor

Class gets separateness through multiple inheritance: 

       SEPARATE_
        SUPPLIER X

SEPARATE_X

SCOOPLI concepts
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SCOOPLI emulation of SCOOP concepts

separate_execute ([x, y], agent r (x, y), 
                             agent r_precondition)
 
r_precondition: BOOLEAN is
   do
      Result := not x.is_empty and y.count > 5
   end
   
   -- client class inherits from
   -- class SEPARATE_CLIENT

r (x, y)
   -- x and y are separate

r (x: separate X; y: separate Y)    
                       
   is
   require
      not x.is_empty
      y.count > 5
      i > 0  -- i non-separate

      x /= Void
   do
   ...
   end

x: SEPARATE_X
   -- SEPARATE_X inherits from X and
   -- SEPARATE_SUPPLIER 

x: separate X
x: X -- class X is separate

SCOOPLISCOOP



Chair of Software Engineering

SCOOPLI Architecture 

 SEPARATE_HANDLER: locking; checking wait 
conditions; scheduling of requests

 PROCESSOR_HANDLERs: execute separate calls;
implement processors

Inheritance

Client
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Distributed execution

 Processors (AppDomains) located on different 
machines

 .NET takes care of the "dirty work"
 Marshalling
 Minimal cost of inter-AppDomain calls

Computer1

AppDomain1

o1
 

o2
 

Computer2

AppDomain2

o3
 

o9
 

Computer3

AppDomain3

o4
 

o5
 

AppDomain4

o6
 

o7
 

o8
 

o9.f

o1.g

o6.f (o3)

 o8.g

o4.f
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SCOOP multithreaded elevators



Chair of Software Engineering

Elevator example architecture

For maximal concurrency, all objects are separate

Inheritance

Client
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Class BUTTON

separate class
 

BUTTON

feature 

target: INTEGER

end
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Class CABIN_BUTTON

separate class CABIN_BUTTON inherit 
BUTTON

feature 
cabin: ELEVATOR

request is
-- Send to associated elevator a request to stop on level target.

   do
actual_request (cabin)

   end

actual_request (e: ELEVATOR) is
-- Get hold of e and send a request to stop on level target.

   do
e.accept (target)

   end
end
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Class ELEVATOR

separate class ELEVATOR feature {BUTTON, DISPATCHER}

accept (floor: INTEGER) is
-- Record and process a request to go to floor.

   do
record (floor)
if not moving then process_request end

   end

feature {MOTOR}

record_stop (floor: INTEGER) is
-- Record information that elevator has stopped on 

floor.
   do

moving := False ; position := floor ; process_request
   end
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Class ELEVATOR
feature {NONE} -- Implementation

process_request is
-- Handle next pending request, if any.

   local floor: INTEGER do
if not pending.is_empty then
     floor := pending.item ; actual_process (puller, floor)
     pending.remove
end

   end

actual_process (m: MOTOR; floor: INTEGER)  is
-- Handle next pending request, if any.

   do
moving := true ; m.move (floor)

   end

feature {NONE} -- Implementation
puller: MOTOR ; pending: QUEUE [INTEGER] 

end
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Class MOTOR

separate class MOTOR feature {ELEVATOR}

move (floor: INTEGER) is

-- Go to floor; once there, report.

   do

gui_main_window.move_elevator (cabin_number, floor)

signal_stopped (cabin)

   end

signal_stopped (e: ELEVATOR) is

-- Report that elevator e stopped on level position.

   do  e.record_stop (position) end

feature {NONE}

cabin: ELEVATOR   ; position: INTEGER    -- Current floor level.

gui_main_window: GUI_MAIN_WINDOW

end



Chair of Software Engineering

Why SCOOP?

 SCOOP model
 Simple yet powerful

 Easier and safer than common concurrent techniques, 
e.g. Java Threads

 Full concurrency support

 Full use O-O and Design by Contract

 Supports  various platforms and concurrency 
architectures

 One new keyword: separate

 SCOOPLI library
 SCOOP-based syntax
 Implemented on .NET
 Distributed execution with .NET Remoting
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Future work & open problems

 Other “handles”
 Direct support for distribution
 Prevent deadlock,  extend access control policy
 Extend for real-time

 Duel mechanism with priorities
 Timing assertions?

 Integrate with Eiffel Software compiler
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Application to Web services

 Every Web service should be described by a 
contract

 SCOOP seems to provide the right conceptual 
framework

 Implementation is in progress
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Why SCOOP?

 Extend object technology with general and powerful 
concurrency support

 Provide the industry with simple techniques for 
parallel, distributed, internet, real-time programming

 Make programmers sleep better!


